Machine Learning Reveals Time-Varying Microbial Predictors with Complex Effects on Glucose Regulation.

T2D gut microbiome machine learning prediction analysis type 2 diabetes

Journal

mSystems
ISSN: 2379-5077
Titre abrégé: mSystems
Pays: United States
ID NLM: 101680636

Informations de publication

Date de publication:
16 Feb 2021
Historique:
entrez: 17 2 2021
pubmed: 18 2 2021
medline: 18 2 2021
Statut: epublish

Résumé

The incidence of type 2 diabetes (T2D) has been increasing globally, and a growing body of evidence links type 2 diabetes with altered microbiota composition. Type 2 diabetes is preceded by a long prediabetic state characterized by changes in various metabolic parameters. We tested whether the gut microbiome could have predictive potential for T2D development during the healthy and prediabetic disease stages. We used prospective data of 608 well-phenotyped Finnish men collected from the population-based Metabolic Syndrome in Men (METSIM) study to build machine learning models for predicting continuous glucose and insulin measures in a shorter (1.5 year) and longer (4 year) period. Our results show that the inclusion of the gut microbiome improves prediction accuracy for modeling T2D-associated parameters such as glycosylated hemoglobin and insulin measures. We identified novel microbial biomarkers and described their effects on the predictions using interpretable machine learning techniques, which revealed complex linear and nonlinear associations. Additionally, the modeling strategy carried out allowed us to compare the stability of model performance and biomarker selection, also revealing differences in short-term and long-term predictions. The identified microbiome biomarkers provide a predictive measure for various metabolic traits related to T2D, thus providing an additional parameter for personal risk assessment. Our work also highlights the need for robust modeling strategies and the value of interpretable machine learning.

Identifiants

pubmed: 33594006
pii: 6/1/e01191-20
doi: 10.1128/mSystems.01191-20
pmc: PMC8573957
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : NHLBI NIH HHS
ID : P01 HL028481
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK117850
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL144651
Pays : United States

Informations de copyright

Copyright © 2021 Aasmets et al.

Références

mSystems. 2020 Apr 7;5(2):
pubmed: 32265314
Nucleic Acids Res. 2002 Jul 15;30(14):3059-66
pubmed: 12136088
Science. 2016 Apr 29;352(6285):565-9
pubmed: 27126040
Nature. 2012 Oct 4;490(7418):55-60
pubmed: 23023125
Diabetes Care. 2004 Jan;27(1):281-2
pubmed: 14694010
EBioMedicine. 2020 Jan;51:102590
pubmed: 31901868
Gut Microbes. 2015;6(2):101-9
pubmed: 25648687
Gigascience. 2019 Sep 1;8(9):
pubmed: 31544212
Eur J Clin Nutr. 2015 Jun;69(6):734-9
pubmed: 25626409
Diabetes. 2009 May;58(5):1212-21
pubmed: 19223598
Nature. 2019 May;569(7758):663-671
pubmed: 31142858
Nat Biotechnol. 2019 Aug;37(8):852-857
pubmed: 31341288
Nature. 2012 Jun 13;486(7402):207-14
pubmed: 22699609
Indian J Microbiol. 2013 Dec;53(4):377-84
pubmed: 24426139
Diabetologia. 2018 Apr;61(4):810-820
pubmed: 29379988
Nat Methods. 2016 Jul;13(7):581-3
pubmed: 27214047
mBio. 2020 Jun 9;11(3):
pubmed: 32518182
PLoS One. 2013 Aug 27;8(8):e71108
pubmed: 24013136
Gut Microbes. 2016 Jul 3;7(4):313-322
pubmed: 27355107
PLoS Comput Biol. 2016 Jul 11;12(7):e1004977
pubmed: 27400279
World J Mens Health. 2020 Jan;38(1):48-60
pubmed: 30929328
Curr Microbiol. 2010 Jul;61(1):69-78
pubmed: 20087741
PLoS One. 2018 Aug 6;13(8):e0201904
pubmed: 30080866
J Lipid Res. 2017 Mar;58(3):481-493
pubmed: 28119442
Diabetes Care. 1999 Sep;22(9):1462-70
pubmed: 10480510
Science. 2009 Dec 18;326(5960):1694-7
pubmed: 19892944
Lancet. 2013 Jun 1;381(9881):1956-7
pubmed: 23725732
Can J Microbiol. 2016 Aug;62(8):692-703
pubmed: 27314511
Lancet. 2012 Jun 16;379(9833):2279-90
pubmed: 22683128
Genome Biol. 2017 Apr 13;18(1):70
pubmed: 28407784
Science. 2016 Apr 29;352(6285):560-4
pubmed: 27126039
Nat Rev Microbiol. 2018 Jul;16(7):410-422
pubmed: 29795328
Nat Genet. 2019 Apr;51(4):600-605
pubmed: 30778224
Diabetes Care. 2021 Feb;44(2):358-366
pubmed: 33288652
Nature. 2013 Jun 6;498(7452):99-103
pubmed: 23719380
Mol Biol Evol. 2009 Jul;26(7):1641-50
pubmed: 19377059

Auteurs

Oliver Aasmets (O)

Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia.
Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.

Kreete Lüll (K)

Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia.
Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.

Jennifer M Lang (JM)

Department of Medicine, University of California, Los Angeles, California, USA.

Calvin Pan (C)

Department of Medicine, University of California, Los Angeles, California, USA.

Johanna Kuusisto (J)

Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, and Kuopio University Hospital, Kuopio, Finland.

Krista Fischer (K)

Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia.

Markku Laakso (M)

Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, and Kuopio University Hospital, Kuopio, Finland.

Aldons J Lusis (AJ)

Department of Medicine, University of California, Los Angeles, California, USA.
Department of Human Genetics, University of California, Los Angeles, California, USA.
Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA.

Elin Org (E)

Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia elin.org@ut.ee.

Classifications MeSH