Multi-scale optoacoustic molecular imaging of brain diseases.
Brain
Multi-spectral optoacoustic tomography (MSOT)
Neuroimaging
Optical imaging
Photoacoustics
Journal
European journal of nuclear medicine and molecular imaging
ISSN: 1619-7089
Titre abrégé: Eur J Nucl Med Mol Imaging
Pays: Germany
ID NLM: 101140988
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
received:
07
12
2020
accepted:
17
01
2021
pubmed:
18
2
2021
medline:
12
11
2021
entrez:
17
2
2021
Statut:
ppublish
Résumé
The ability to non-invasively visualize endogenous chromophores and exogenous probes and sensors across the entire rodent brain with the high spatial and temporal resolution has empowered optoacoustic imaging modalities with unprecedented capacities for interrogating the brain under physiological and diseased conditions. This has rapidly transformed optoacoustic microscopy (OAM) and multi-spectral optoacoustic tomography (MSOT) into emerging research tools to study animal models of brain diseases. In this review, we describe the principles of optoacoustic imaging and showcase recent technical advances that enable high-resolution real-time brain observations in preclinical models. In addition, advanced molecular probe designs allow for efficient visualization of pathophysiological processes playing a central role in a variety of neurodegenerative diseases, brain tumors, and stroke. We describe outstanding challenges in optoacoustic imaging methodologies and propose a future outlook.
Identifiants
pubmed: 33594473
doi: 10.1007/s00259-021-05207-4
pii: 10.1007/s00259-021-05207-4
pmc: PMC8566397
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
4152-4170Subventions
Organisme : NINDS NIH HHS
ID : UF1 NS107680
Pays : United States
Informations de copyright
© 2021. The Author(s).
Références
Belliveau JW, Kennedy DN Jr, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, et al. Functional mapping of the human visual cortex by magnetic resonance imaging. Science. 1991;254:716–9. https://doi.org/10.1126/science.1948051 .
doi: 10.1126/science.1948051
pubmed: 1948051
Lerch JP, van der Kouwe AJW, Raznahan A, Paus T, Johansen-Berg H, Miller KL, et al. Studying neuroanatomy using MRI. Nat Neurosci. 2017;20:314–26. https://doi.org/10.1038/nn.4501 .
doi: 10.1038/nn.4501
pubmed: 28230838
Nordberg A, Rinne JO, Kadir A, Långström B. The use of PET in Alzheimer disease. Nat Rev Neurol. 2010;6:78–87. https://doi.org/10.1038/nrneurol.2009.217 .
doi: 10.1038/nrneurol.2009.217
pubmed: 20139997
Langen K-J, Galldiks N, Hattingen E, Shah NJ. Advances in neuro-oncology imaging. Nat Rev Neurol. 2017;13:279–89. https://doi.org/10.1038/nrneurol.2017.44 .
doi: 10.1038/nrneurol.2017.44
pubmed: 28387340
Macé E, Montaldo G, Cohen I, Baulac M, Fink M, Tanter M. Functional ultrasound imaging of the brain. Nat Methods. 2011;8:662–4. https://doi.org/10.1038/nmeth.1641 .
doi: 10.1038/nmeth.1641
pubmed: 21725300
Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJH, Frangioni JV. Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol. 2013;10:507–18. https://doi.org/10.1038/nrclinonc.2013.123 .
doi: 10.1038/nrclinonc.2013.123
pubmed: 23881033
pmcid: 3755013
Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535–62. https://doi.org/10.1016/j.jalz.2018.02.018 .
doi: 10.1016/j.jalz.2018.02.018
pubmed: 29653606
pmcid: 5958625
Zijlmans M, Zweiphenning W, van Klink N. Changing concepts in presurgical assessment for epilepsy surgery. Nat Rev Neurol. 2019;15:594–606. https://doi.org/10.1038/s41582-019-0224-y .
doi: 10.1038/s41582-019-0224-y
pubmed: 31341275
Bacskai BJ, Kajdasz ST, Christie RH, Carter C, Games D, Seubert P, et al. Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat Med. 2001;7:369–72. https://doi.org/10.1038/85525 .
doi: 10.1038/85525
pubmed: 11231639
Keu KV, Witney TH, Yaghoubi S, Rosenberg J, Kurien A, Magnusson R, et al. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med. 2017;9. https://doi.org/10.1126/scitranslmed.aag2196 .
Thomalla G, Simonsen CZ, Boutitie F, Andersen G, Berthezene Y, Cheng B, et al. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. 2018;379:611–22. https://doi.org/10.1056/NEJMoa1804355 .
doi: 10.1056/NEJMoa1804355
pubmed: 29766770
Klohs J, Rudin M. Unveiling molecular events in the brain by noninvasive imaging. Neuroscientist. 2011;17:539–59. https://doi.org/10.1177/1073858410383433 .
doi: 10.1177/1073858410383433
pubmed: 21987617
Zhong Y, Ma Z, Wang F, Wang X, Yang Y, Liu Y, et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat Biotechnol. 2019;37:1322–31. https://doi.org/10.1038/s41587-019-0262-4 .
doi: 10.1038/s41587-019-0262-4
pubmed: 31570897
pmcid: 6858548
Chen G, Cao Y, Tang Y, Yang X, Liu Y, Huang D, et al. Advanced near-infrared light for monitoring and modulating the spatiotemporal dynamics of cell functions in living systems. Adv Sci. 2020;7:1903783. https://doi.org/10.1002/advs.201903783 .
doi: 10.1002/advs.201903783
Klohs J, Steinbrink J, Nierhaus T, Bourayou R, Lindauer U, Bahmani P, et al. Noninvasive near-infrared imaging of fluorochromes within the brain of live mice: an in vivo phantom study. Mol Imaging. 2006;5:180–7. https://doi.org/10.2310/7290.2006.00021 .
doi: 10.2310/7290.2006.00021
pubmed: 16954033
Geraldes R, Ciccarelli O, Barkhof F, De Stefano N, Enzinger C, Filippi M, et al. The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nat Rev Neurol. 2018;14:199–213. https://doi.org/10.1038/nrneurol.2018.14 .
doi: 10.1038/nrneurol.2018.14
pubmed: 29521337
Baron J-C. Protecting the ischaemic penumbra as an adjunct to thrombectomy for acute stroke. Nat Rev Neurol. 2018;14:325–37. https://doi.org/10.1038/s41582-018-0002-2 .
doi: 10.1038/s41582-018-0002-2
pubmed: 29674752
Deffieux T, Demene C, Pernot M, Tanter M. Functional ultrasound neuroimaging: a review of the preclinical and clinical state of the art. Curr Opin Neurobiol. 2018;50:128–35. https://doi.org/10.1016/j.conb.2018.02.001 .
doi: 10.1016/j.conb.2018.02.001
pubmed: 29477979
Lipsman N, Schwartz ML, Huang Y, Lee L, Sankar T, Chapman M, et al. MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. Lancet Neurol. 2013;12:462–8. https://doi.org/10.1016/S1474-4422(13)70048-6 .
doi: 10.1016/S1474-4422(13)70048-6
pubmed: 23523144
Martínez-Fernández R, Rodríguez-Rojas R, Del Álamo M, Hernández-Fernández F, Pineda-Pardo JA, Dileone M, et al. Focused ultrasound subthalamotomy in patients with asymmetric Parkinso’s disease: a pilot study. Lancet Neurol. 2018;17:54–63. https://doi.org/10.1016/s1474-4422(17)30403-9 .
doi: 10.1016/s1474-4422(17)30403-9
pubmed: 29203153
Tufail Y, Yoshihiro A, Pati S, Li MM, Tyler WJ. Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat Protoc. 2011;6:1453–70. https://doi.org/10.1038/nprot.2011.371 .
doi: 10.1038/nprot.2011.371
pubmed: 21886108
Wang LV, Yao J. A practical guide to photoacoustic tomography in the life sciences. Nat Methods. 2016;13:627. https://doi.org/10.1038/nmeth.3925 .
doi: 10.1038/nmeth.3925
pubmed: 27467726
pmcid: 4980387
Wang X, Pang Y, Ku G, Xie X, Stoica G, Wang LV. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotechnol. 2003;21:803–6. https://doi.org/10.1038/nbt839 .
doi: 10.1038/nbt839
pubmed: 12808463
Dima A, Burton NC, Ntziachristos V. Multispectral optoacoustic tomography at 64, 128, and 256 channels. J Biomed Opt. 2014;19:36021. https://doi.org/10.1117/1.jbo.19.3.036021 .
doi: 10.1117/1.jbo.19.3.036021
pubmed: 24676383
Yao J, Wang L, Yang J-M, Maslov KI, Wong TTW, Li L, et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat Methods. 2015;12:407–10. https://doi.org/10.1038/nmeth.3336 .
doi: 10.1038/nmeth.3336
pubmed: 25822799
pmcid: 4428901
Gamelin J, Maurudis A, Aguirre A, Huang F, Guo P, Wang LV, et al. A real-time photoacoustic tomography system for small animals. Opt Express. 2009;17:10489–98. https://doi.org/10.1364/oe.17.010489 .
doi: 10.1364/oe.17.010489
pubmed: 19550444
Razansky D, Distel M, Vinegoni C, Ma R, Perrimon N, Köster RW, et al. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat Photonics. 2009;3:412–7. https://doi.org/10.1038/nphoton.2009.98 .
doi: 10.1038/nphoton.2009.98
Taruttis A, Morscher S, Burton NC, Razansky D, Ntziachristos V. Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs. PLoS One. 2012;7:e30491-e. https://doi.org/10.1371/journal.pone.0030491 .
doi: 10.1371/journal.pone.0030491
Gottschalk S, Fehm TF, Dean-Ben XL, Tsytsarev V, Razansky D. Correlation between volumetric oxygenation responses and electrophysiology identifies deep thalamocortical activity during epileptic seizures. Neurophotonics. 2017;4:011007. https://doi.org/10.1117/1.NPh.4.1.011007 .
doi: 10.1117/1.NPh.4.1.011007
pubmed: 27725948
Deán-Ben XL, Razansky D. Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography. Light: Sci & Appl. 2014;3:e137. https://doi.org/10.1038/lsa.2014.18 .
doi: 10.1038/lsa.2014.18
Gottschalk S, Degtyaruk O, Mc Larney B, Rebling J, Hutter MA, Deán-Ben XL, et al. Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain. Nat Biomed Eng. 2019;3:392–401. https://doi.org/10.1038/s41551-019-0372-9 .
doi: 10.1038/s41551-019-0372-9
pubmed: 30992553
pmcid: 6825512
Gottschalk S, Fehm TF, Deán-Ben XL, Razansky D. Noninvasive real-time visualization of multiple cerebral hemodynamic parameters in whole mouse brains using five-dimensional optoacoustic tomography. JCBFM. 2015;35:531–5. https://doi.org/10.1038/jcbfm.2014.249 .
doi: 10.1038/jcbfm.2014.249
Cao R, Li J, Ning B, Sun N, Wang T, Zuo Z, et al. Functional and oxygen-metabolic photoacoustic microscopy of the awake mouse brain. NeuroImage. 2017;150:77–87. https://doi.org/10.1016/j.neuroimage.2017.01.049 .
doi: 10.1016/j.neuroimage.2017.01.049
pubmed: 28111187
Ning B, Sun N, Cao R, Chen R, Kirk Shung K, Hossack JA, et al. Ultrasound-aided multi-parametric photoacoustic microscopy of the mouse brain. Sci Rep. 2015;5:18775. https://doi.org/10.1038/srep18775 .
doi: 10.1038/srep18775
pubmed: 26688368
pmcid: 4685318
Dean-Ben XL, Robin J, Ni R, Razansky D. Noninvasive three-dimensional optoacoustic localization microangiography of deep tissues. 2020. arXiv:2007.00372.
Haedicke K, Agemy L, Omar M, Berezhnoi A, Roberts S, Longo-Machado C, et al. High-resolution optoacoustic imaging of tissue responses to vascular-targeted therapies. Nat Biomed Eng. 2020;4:286–97. https://doi.org/10.1038/s41551-020-0527-8 .
doi: 10.1038/s41551-020-0527-8
pubmed: 32165736
pmcid: 7153756
Li L, Zhu L, Ma C, Lin L, Yao J, Wang L, et al. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution. Nat Biomed Eng. 2017;1:0071. https://doi.org/10.1038/s41551-017-0071 .
doi: 10.1038/s41551-017-0071
pubmed: 29333331
pmcid: 5766044
Kim J, Kim JY, Jeon S, Baik JW, Cho SH, Kim C. Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers. Light: Sci & Appl. 2019;8:103. https://doi.org/10.1038/s41377-019-0220-4 .
doi: 10.1038/s41377-019-0220-4
Wong TTW, Zhang R, Zhang C, Hsu H-C, Maslov KI, Wang L, et al. Label-free automated three-dimensional imaging of whole organs by microtomy-assisted photoacoustic microscopy. Nat Commun. 2017;8:1386. https://doi.org/10.1038/s41467-017-01649-3 .
doi: 10.1038/s41467-017-01649-3
pubmed: 29123109
pmcid: 5680318
Shi J, Wong TTW, He Y, Li L, Zhang R, Yung CS, et al. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy. Nat Photonics. 2019;13:609–15. https://doi.org/10.1038/s41566-019-0441-3 .
doi: 10.1038/s41566-019-0441-3
pubmed: 31440304
pmcid: 6705424
Kisler K, Lazic D, Sweeney MD, Plunkett S, El Khatib M, Vinogradov SA, et al. In vivo imaging and analysis of cerebrovascular hemodynamic responses and tissue oxygenation in the mouse brain. Nat Protoc. 2018;13:1377–402. https://doi.org/10.1038/nprot.2018.034 .
doi: 10.1038/nprot.2018.034
pubmed: 29844521
pmcid: 6402338
Cao R, Li J, Kharel Y, Zhang C, Morris E, Santos WL, et al. Photoacoustic microscopy reveals the hemodynamic basis of sphingosine 1-phosphate-induced neuroprotection against ischemic stroke. Theranostics. 2018;8:6111–20. https://doi.org/10.7150/thno.29435 .
doi: 10.7150/thno.29435
pubmed: 30613286
pmcid: 6299683
Burton NC, Patel M, Morscher S, Driessen WH, Claussen J, Beziere N, et al. Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization. Neuroimage. 2013;65:522–8. https://doi.org/10.1016/j.neuroimage.2012.09.053 .
doi: 10.1016/j.neuroimage.2012.09.053
pubmed: 23026761
Zhang P, Li L, Lin L, Shi J, Wang LV. In vivo superresolution photoacoustic computed tomography by localization of single dyed droplets. Light: Sci & Appl. 2019;8:36. https://doi.org/10.1038/s41377-019-0147-9 .
doi: 10.1038/s41377-019-0147-9
Kim C. Beyond the acoustic diffraction limit: superresolution localization optoacoustic tomography (LOT). Light Sci Appl. 2018;7:19. https://doi.org/10.1038/s41377-018-0029-6 .
doi: 10.1038/s41377-018-0029-6
pubmed: 30839593
pmcid: 6107006
Dean-Ben XL, Razansky D. Localization optoacoustic tomography. Light: Sci & Appl. 2018;7:18004. https://doi.org/10.1038/lsa.2018.4 .
doi: 10.1038/lsa.2018.4
Schulz K, Sydekum E, Krueppel R, Engelbrecht CJ, Schlegel F, Schröter A, et al. Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex. Nat Methods. 2012;9:597–602. https://doi.org/10.1038/nmeth.2013 .
doi: 10.1038/nmeth.2013
pubmed: 22561989
Schlegel F, Sych Y, Schroeter A, Stobart J, Weber B, Helmchen F, et al. Fiber-optic implant for simultaneous fluorescence-based calcium recordings and BOLD fMRI in mice. Nat Protoc. 2018;13:840–55. https://doi.org/10.1038/nprot.2018.003 .
doi: 10.1038/nprot.2018.003
pubmed: 29599439
Olefir I, Ghazaryan A, Yang H, Malekzadeh-Najafabadi J, Glasl S, Symvoulidis P, et al. Spatial and spectral mapping and decomposition of neural dynamics and organization of the mouse brain with multispectral optoacoustic tomography. Cell Rep. 2019;26:2833–46.e3. https://doi.org/10.1016/j.celrep.2019.02.020 .
doi: 10.1016/j.celrep.2019.02.020
pubmed: 30840901
pmcid: 6403416
Estrada H, Ozbek A, Robin J, Shoham S, Razansky D. Spherical array system for high precision transcranial ultrasound stimulation and optoacoustic imaging in rodents. IEEE Trans Ultrason Ferroelectr Freq Control. 2020;Pp. doi: https://doi.org/10.1109/tuffc.2020.2994877 .
Mc Larney B, Hutter MA, Degtyaruk O, Deán-Ben XL, Razansky D. Monitoring of stimulus evoked murine somatosensory cortex hemodynamic activity with volumetric multi-spectral optoacoustic tomography. Front Neurosci. 2020;14:536. https://doi.org/10.3389/fnins.2020.00536 .
doi: 10.3389/fnins.2020.00536
pubmed: 32581686
pmcid: 7283916
Deán-Ben XL, Gottschalk S, Mc Larney B, Shoham S, Razansky D. Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chem Soc Rev. 2017;46:2158–98. https://doi.org/10.1039/c6cs00765a .
doi: 10.1039/c6cs00765a
pubmed: 28276544
pmcid: 5460636
Li Y, Li L, Zhu L, Maslov K, Shi J, Hu P, et al. Snapshot photoacoustic topography through an ergodic relay for high-throughput imaging of optical absorption. Nat Photonics. 2020;14:164–70. https://doi.org/10.1038/s41566-019-0576-2 .
doi: 10.1038/s41566-019-0576-2
pubmed: 34178097
pmcid: 8223468
Ovsepian SV, Olefir I, Westmeyer G, Razansky D, Ntziachristos V. Pushing the boundaries of neuroimaging with optoacoustics. Neuron. 2017;96:966–88. https://doi.org/10.1016/j.neuron.2017.10.022 .
doi: 10.1016/j.neuron.2017.10.022
pubmed: 29216459
Weber J, Beard PC, Bohndiek SE. Contrast agents for molecular photoacoustic imaging. Nat Methods. 2016;13:639–50. https://doi.org/10.1038/nmeth.3929 .
doi: 10.1038/nmeth.3929
pubmed: 27467727
Pu K, Shuhendler AJ, Jokerst JV, Mei J, Gambhir SS, Bao Z, et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat Nanotechnol. 2014;9:233–9. https://doi.org/10.1038/nnano.2013.302 .
doi: 10.1038/nnano.2013.302
pubmed: 24463363
pmcid: 3947658
Gujrati V, Mishra A, Ntziachristos V. Molecular imaging probes for multi-spectral optoacoustic tomography. Chem Commun (Camb). 2017;53:4653–72. https://doi.org/10.1039/c6cc09421j .
doi: 10.1039/c6cc09421j
De Luca M, Aiuti A, Cossu G, Parmar M, Pellegrini G, Robey PG. Advances in stem cell research and therapeutic development. Nat Cell Biol. 2019;21:801–11. https://doi.org/10.1038/s41556-019-0344-z .
doi: 10.1038/s41556-019-0344-z
pubmed: 31209293
Chen PJ, Kang YD, Lin CH, Chen SY, Hsieh CH, Chen YY, et al. Multitheragnostic multi-GNRs crystal-seeded magnetic nanoseaurchin for enhanced in vivo mesenchymal-stem-cell homing, multimodal imaging, and stroke therapy. Adv Mater. 2015;27:6488–95. https://doi.org/10.1002/adma.201502784 .
doi: 10.1002/adma.201502784
pubmed: 26403165
Yin C, Wen G, Liu C, Yang B, Lin S, Huang J, et al. Organic semiconducting polymer nanoparticles for photoacoustic labeling and tracking of stem cells in the second near-infrared window. ACS Nano. 2018;12:12201–11. https://doi.org/10.1021/acsnano.8b05906 .
doi: 10.1021/acsnano.8b05906
pubmed: 30433761
Dhada KS, Hernandez DS, Suggs LJ. In vivo photoacoustic tracking of mesenchymal stem cell viability. ACS Nano. 2019;13:7791–9. https://doi.org/10.1021/acsnano.9b01802 .
doi: 10.1021/acsnano.9b01802
pubmed: 31250647
pmcid: 7155740
Kim T, Lemaster JE, Chen F, Li J, Jokerst JV. Photoacoustic imaging of human mesenchymal stem cells labeled with prussian blue-poly(l-lysine) nanocomplexes. ACS Nano. 2017;11:9022–32. https://doi.org/10.1021/acsnano.7b03519 .
doi: 10.1021/acsnano.7b03519
pubmed: 28759195
pmcid: 5630123
Kubelick KP, Snider EJ, Ethier CR, Emelianov S. Development of a stem cell tracking platform for ophthalmic applications using ultrasound and photoacoustic imaging. Theranostics. 2019;9:3812–24. https://doi.org/10.7150/thno.32546 .
doi: 10.7150/thno.32546
pubmed: 31281515
pmcid: 6587354
Li W, Chen R, Lv J, Wang H, Liu Y, Peng Y, et al. In Vivo Photoacoustic imaging of brain injury and rehabilitation by high-efficient near-infrared dye labeled mesenchymal stem cells with enhanced brain barrier permeability. Adv Sci. 2018;5:1700277. https://doi.org/10.1002/advs.201700277 .
doi: 10.1002/advs.201700277
Kang J, Kim D, Wang J, Han Y, Zuidema JM, Hariri A, et al. Enhanced performance of a molecular photoacoustic imaging agent by encapsulation in mesoporous silicon nanoparticles. Adv Mater. 2018;30:e1800512. https://doi.org/10.1002/adma.201800512 .
doi: 10.1002/adma.201800512
pubmed: 29782671
pmcid: 6309700
Yao M, Shi X, Zuo C, Ma M, Zhang L, Zhang H, et al. Engineering of SPECT/photoacoustic imaging/antioxidative stress triple-function nanoprobe for advanced mesenchymal stem cell therapy of cerebral ischemia. ACS Appl Mater Interfaces. 2020;12:37885–95. https://doi.org/10.1021/acsami.0c10500 .
doi: 10.1021/acsami.0c10500
pubmed: 32806884
Song J, Yang X, Jacobson O, Lin L, Huang P, Niu G, et al. Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy. ACS Nano. 2015;9:9199–209. https://doi.org/10.1021/acsnano.5b03804 .
doi: 10.1021/acsnano.5b03804
pubmed: 26308265
pmcid: 5227595
Guo B, Sheng Z, Hu D, Liu C, Zheng H, Liu B. Through scalp and skull NIR-II photothermal therapy of deep orthotopic brain tumors with precise photoacoustic imaging guidance. Adv Mater. 2018;30:1802591. https://doi.org/10.1002/adma.201802591 .
doi: 10.1002/adma.201802591
Comenge J, Sharkey J, Fragueiro O, Wilm B, Brust M, Murray P, et al. Multimodal cell tracking from systemic administration to tumour growth by combining gold nanorods and reporter genes. Elife. 2018;7:e33140. https://doi.org/10.7554/eLife.33140 .
doi: 10.7554/eLife.33140
pubmed: 29949503
pmcid: 6021173
Qian Y, Piatkevich KD, Mc Larney B, Abdelfattah AS, Mehta S, Murdock MH, et al. A genetically encoded near-infrared fluorescent calcium ion indicator. Nat Methods. 2019;16:171–4. https://doi.org/10.1038/s41592-018-0294-6 .
doi: 10.1038/s41592-018-0294-6
pubmed: 30664778
pmcid: 6393164
Mishra K, Stankevych M, Fuenzalida-Werner JP, Grassmann S, Gujrati V, Huang Y, et al. Multiplexed whole-animal imaging with reversibly switchable optoacoustic proteins. Sci Adv. 2020;6:eaaz6293. https://doi.org/10.1126/sciadv.aaz6293 .
doi: 10.1126/sciadv.aaz6293
pubmed: 32582850
pmcid: 7292636
Yao J, Kaberniuk AA, Li L, Shcherbakova DM, Zhang R, Wang L, et al. Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe. Nat Methods. 2016;13:67–73. https://doi.org/10.1038/nmeth.3656 .
doi: 10.1038/nmeth.3656
pubmed: 26550774
Li L, Shemetov AA, Baloban M, Hu P, Zhu L, Shcherbakova DM, et al. Small near-infrared photochromic protein for photoacoustic multi-contrast imaging and detection of protein interactions in vivo. Nat Commun. 2018;9:2734. https://doi.org/10.1038/s41467-018-05231-3 .
doi: 10.1038/s41467-018-05231-3
pubmed: 30013153
pmcid: 6048155
Cai Z, Zhu L, Wang M, Roe AW, Xi W, Qian J. NIR-II fluorescence microscopic imaging of cortical vasculature in non-human primates. Theranostics. 2020;10:4265–76. https://doi.org/10.7150/thno.43533 .
doi: 10.7150/thno.43533
pubmed: 32226552
pmcid: 7086344
Zhang XD, Wang H, Antaris AL, Li L, Diao S, Ma R, et al. Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv Mater. 2016;28:6872–9. https://doi.org/10.1002/adma.201600706 .
doi: 10.1002/adma.201600706
pubmed: 27253071
pmcid: 5293734
Roberts S, Seeger M, Jiang Y, Mishra A, Sigmund F, Stelzl A, et al. Calcium sensor for photoacoustic imaging. J Am Chem Soc. 2018;140:2718–21. https://doi.org/10.1021/jacs.7b03064 .
doi: 10.1021/jacs.7b03064
pubmed: 28945084
Fosque BF, Sun Y, Dana H, Yang CT, Ohyama T, Tadross MR, et al. Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators. Science. 2015;347:755–60. https://doi.org/10.1126/science.1260922 .
doi: 10.1126/science.1260922
pubmed: 25678659
Shemetov AA, Monakhov MV, Zhang Q, Canton-Josh JE, Kumar M, Chen M, et al. A near-infrared genetically encoded calcium indicator for in vivo imaging. Nat Biotechnol. 2020. https://doi.org/10.1038/s41587-020-0710-1 .
Stobart JL, Ferrari KD, Barrett MJP, Glück C, Stobart MJ, Zuend M, et al. Cortical circuit activity evokes rapid astrocyte calcium signals on a similar timescale to neurons. Neuron. 2018;98:726–35.e4. https://doi.org/10.1016/j.neuron.2018.03.050 .
doi: 10.1016/j.neuron.2018.03.050
pubmed: 29706581
Monakhov MV, Matlashov ME, Colavita M, Song C, Shcherbakova DM, Antic SD, et al. Screening and cellular characterization of genetically encoded voltage indicators based on near-infrared fluorescent proteins. ACS Chem Neurosci. 2020;11:3523–31. https://doi.org/10.1021/acschemneuro.0c00046 .
doi: 10.1021/acschemneuro.0c00046
pubmed: 33063984
Bindocci E, Savtchouk I, Liaudet N, Becker D, Carriero G, Volterra A. Three-dimensional Ca2+ imaging advances understanding of astrocyte biology. Science. 2017, 356:eaai8185. https://doi.org/10.1126/science.aai8185 .
Dean-Ben XL, Sela G, Lauri A, Kneipp M, Ntziachristos V, Westmeyer GG, et al. Functional optoacoustic neuro-tomography for scalable whole-brain monitoring of calcium indicators. Light Sci Appl. 2016;5:e16201. https://doi.org/10.1038/lsa.2016.201 .
doi: 10.1038/lsa.2016.201
pubmed: 30167137
pmcid: 6059886
Yankeelov TE, Abramson RG, Quarles CC. Quantitative multimodality imaging in cancer research and therapy. Nat Rev Clin Oncol. 2014;11:670–80. https://doi.org/10.1038/nrclinonc.2014.134 .
doi: 10.1038/nrclinonc.2014.134
pubmed: 25113842
pmcid: 4909117
Kircher MF, de la Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med. 2012;18:829–34. https://doi.org/10.1038/nm.2721 .
doi: 10.1038/nm.2721
pubmed: 22504484
pmcid: 3422133
Ouyang J, Sun L, Zeng Z, Zeng C, Zeng F, Wu S. Nanoaggregate probe for breast cancer metastasis through multispectral optoacoustic tomography and aggregation-induced NIR-I/II fluorescence imaging. Angew Chem Int Ed Eng. 2020;59:10111–21. https://doi.org/10.1002/anie.201913149 .
doi: 10.1002/anie.201913149
Huang W, Wang K, An Y, Meng H, Gao Y, Xiong Z, et al. In vivo three-dimensional evaluation of tumour hypoxia in nasopharyngeal carcinomas using FMT-CT and MSOT. Eur J Nucl Med Mol Imaging. 2020;47:1027–38. https://doi.org/10.1007/s00259-019-04526-x .
doi: 10.1007/s00259-019-04526-x
pubmed: 31705175
Chen Q, Liang C, Sun X, Chen J, Yang Z, Zhao H, et al. H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay. Proc Natl Acad Sci. 2017;114:5343–8. https://doi.org/10.1073/pnas.1701976114 .
doi: 10.1073/pnas.1701976114
pubmed: 28484000
pmcid: 5448233
Guo B, Chen J, Chen N, Middha E, Xu S, Pan Y, et al. High-resolution 3D NIR-II photoacoustic imaging of cerebral and tumor vasculatures using conjugated polymer nanoparticles as contrast agent. Adv Mater. 2019;31:1808355. https://doi.org/10.1002/adma.201808355 .
doi: 10.1002/adma.201808355
Thawani JP, Amirshaghaghi A, Yan L, Stein JM, Liu J, Tsourkas A. Photoacoustic-guided surgery with indocyanine green-coated superparamagnetic iron oxide nanoparticle clusters. Small. 2017;13. https://doi.org/10.1002/smll.201701300 .
Duan Y, Hu D, Guo B, Shi Q, Wu M, Xu S, et al. Nanostructural control enables optimized photoacoustic–fluorescence–magnetic resonance multimodal imaging and photothermal therapy of brain tumor. Adv Funct Mater. 2020;30:1907077. https://doi.org/10.1002/adfm.201907077 .
doi: 10.1002/adfm.201907077
Neuschmelting V, Harmsen S, Beziere N, Lockau H, Hsu HT, Huang R, et al. Dual-modality surface-enhanced resonance Raman scattering and multispectral optoacoustic tomography nanoparticle approach for brain tumor delineation. Small. 2018;14:e1800740. https://doi.org/10.1002/smll.201800740 .
doi: 10.1002/smll.201800740
pubmed: 29726109
pmcid: 6541212
Yang Z, Du Y, Sun Q, Peng Y, Wang R, Zhou Y, et al. Albumin-based nanotheranostic probe with hypoxia alleviating potentiates synchronous multimodal imaging and phototherapy for glioma. ACS Nano. 2020;14:6191–212. https://doi.org/10.1021/acsnano.0c02249 .
doi: 10.1021/acsnano.0c02249
pubmed: 32320600
You Q, Zhang K, Liu J, Liu C, Wang H, Wang M, et al. Persistent regulation of tumor hypoxia microenvironment via a bioinspired PT-based oxygen nanogenerator for multimodal imaging-guided synergistic phototherapy. Adv Sci. 2020;7:1903341. https://doi.org/10.1002/advs.201903341 .
doi: 10.1002/advs.201903341
Bao X, Yuan Y, Chen J, Zhang B, Li D, Zhou D, et al. In vivo theranostics with near-infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration. Light: Sci & Appl. 2018;7:91. https://doi.org/10.1038/s41377-018-0090-1 .
doi: 10.1038/s41377-018-0090-1
Shashkov EV, Everts M, Galanzha EI, Zharov VP. Quantum dots as multimodal photoacoustic and photothermal contrast agents. Nano Lett. 2008;8:3953–8. https://doi.org/10.1021/nl802442x .
doi: 10.1021/nl802442x
pubmed: 18834183
pmcid: 2645025
Song G, Kenney M, Chen Y-S, Zheng X, Deng Y, Chen Z, et al. Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties. Nat Biomed Eng. 2020;4:325–34. https://doi.org/10.1038/s41551-019-0506-0 .
doi: 10.1038/s41551-019-0506-0
pubmed: 32015409
pmcid: 7071985
Xie H, Liu M, You B, Luo G, Chen Y, Liu B, et al. Biodegradable Bi2O2Se quantum dots for photoacoustic imaging-guided cancer photothermal therapy. Small. 2020;16:1905208. https://doi.org/10.1002/smll.201905208 .
doi: 10.1002/smll.201905208
Zhan C, Huang Y, Lin G, Huang S, Zeng F, Wu S. A gold nanocage/cluster hybrid structure for whole-body multispectral optoacoustic tomography imaging, EGFR inhibitor delivery, and photothermal therapy. Small. 2019;15:e1900309. https://doi.org/10.1002/smll.201900309 .
doi: 10.1002/smll.201900309
pubmed: 31245925
Zhou Z, Li B, Shen C, Wu D, Fan H, Zhao J, et al. Metallic 1 T phase enabling MoS(2) nanodots as an efficient agent for photoacoustic imaging guided photothermal therapy in the near-infrared-II window. Small. 2020:e2004173. https://doi.org/10.1002/smll.202004173 .
Ke K, Yang W, Xie X, Liu R, Wang LL, Lin WW, et al. Copper manganese sulfide nanoplates: a new two-dimensional theranostic nanoplatform for MRI/MSOT dual-modal imaging-guided photothermal therapy in the second near-infrared window. Theranostics. 2017;7:4763–76. https://doi.org/10.7150/thno.21694 .
doi: 10.7150/thno.21694
pubmed: 29187902
pmcid: 5706098
Takakusagi Y, Naz S, Takakusagi K, Ishima M, Murata H, Ohta K, et al. A multimodal molecular imaging study evaluates pharmacological alteration of the tumor microenvironment to improve radiation response. Cancer Res. 2018;78:6828–37. https://doi.org/10.1158/0008-5472.can-18-1654 .
doi: 10.1158/0008-5472.can-18-1654
pubmed: 30301838
pmcid: 8127870
Knauth M, Aras N, Wirtz CR, Dörfler A, Engelhorn T, Sartor K. Surgically induced intracranial contrast enhancement: potential source of diagnostic error in intraoperative MR imaging. AJNR Am J Neuroradiol. 1999;20:1547–53.
pubmed: 10512244
pmcid: 7657760
Deliolanis NC, Ale A, Morscher S, Burton NC, Schaefer K, Radrich K, et al. Deep-tissue reporter-gene imaging with fluorescence and optoacoustic tomography: a performance overview. Mol Imaging Biol. 2014;16:652–60. https://doi.org/10.1007/s11307-014-0728-1 .
doi: 10.1007/s11307-014-0728-1
pubmed: 24609633
Liu C, Chen J, Zhu Y, Gong X, Zheng R, Chen N, et al. Highly sensitive MoS(2)-indocyanine green hybrid for photoacoustic imaging of orthotopic brain glioma at deep site. Nano Lett. 2018;10:48. https://doi.org/10.1007/s40820-018-0202-8 .
doi: 10.1007/s40820-018-0202-8
Song G, Zheng X, Wang Y, Xia X, Chu S, Rao J. A magneto-optical nanoplatform for multimodality imaging of tumors in mice. ACS Nano. 2019;13:7750–8. https://doi.org/10.1021/acsnano.9b01436 .
doi: 10.1021/acsnano.9b01436
pubmed: 31244043
Nedosekin DA, Juratli MA, Sarimollaoglu M, Moore CL, Rusch NJ, Smeltzer MS, et al. Photoacoustic and photothermal detection of circulating tumor cells, bacteria and nanoparticles in cerebrospinal fluid in vivo and ex vivo. J Biophotonics. 2013;6:523–33. https://doi.org/10.1002/jbio.201200242 .
doi: 10.1002/jbio.201200242
pubmed: 23681943
pmcid: 3954749
Guo B, Feng Z, Hu D, Xu S, Middha E, Pan Y, et al. Precise deciphering of brain vasculatures and microscopic tumors with dual NIR-II fluorescence and photoacoustic imaging. Adv Mater. 2019;31:1902504. https://doi.org/10.1002/adma.201902504 .
doi: 10.1002/adma.201902504
Hai P, Imai T, Xu S, Zhang R, Aft RL, Zou J, et al. High-throughput, label-free, single-cell photoacoustic microscopy of intratumoral metabolic heterogeneity. Nat Biomed Eng. 2019;3:381–91. https://doi.org/10.1038/s41551-019-0376-5 .
doi: 10.1038/s41551-019-0376-5
pubmed: 30936431
pmcid: 6544054
Li S, Su W, Wu H, Yuan T, Yuan C, Liu J, et al. Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nat Biomed Eng. 2020;4:704–16. https://doi.org/10.1038/s41551-020-0540-y .
doi: 10.1038/s41551-020-0540-y
pubmed: 32231314
Attia AB, Ho CJ, Chandrasekharan P, Balasundaram G, Tay HC, Burton NC, et al. Multispectral optoacoustic and MRI coregistration for molecular imaging of orthotopic model of human glioblastoma. J Biophotonics. 2016;9:701–8. https://doi.org/10.1002/jbio.201500321 .
doi: 10.1002/jbio.201500321
pubmed: 27091626
Balasundaram G, Ding L, Li X, Attia ABE, Dean-Ben XL, Ho CJH, et al. Noninvasive anatomical and functional imaging of orthotopic glioblastoma development and therapy using multispectral optoacoustic tomography. Transl Oncol. 2018;11:1251–8. https://doi.org/10.1016/j.tranon.2018.07.001 .
doi: 10.1016/j.tranon.2018.07.001
pubmed: 30103155
pmcid: 6092474
Boyle PA, Yu L, Leurgans SE, Wilson RS, Brookmeyer R, Schneider JA, et al. Attributable risk of Alzheimer’s dementia attributed to age-related neuropathologies. Ann Neurol. 2019;85:114–24. https://doi.org/10.1002/ana.25380 .
doi: 10.1002/ana.25380
pubmed: 30421454
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82. https://doi.org/10.1007/bf00308809 .
Klohs J, Rudin M, Shimshek DR, Beckmann N. Imaging of cerebrovascular pathology in animal models of Alzheimer’s disease. Front Aging Neurosci. 2014;6:32. https://doi.org/10.3389/fnagi.2014.00032 .
doi: 10.3389/fnagi.2014.00032
pubmed: 24659966
pmcid: 3952109
Ono M, Sahara N, Kumata K, Ji B, Ni R, Koga S, et al. Distinct binding of PET ligands PBB3 and AV-1451 to tau fibril strains in neurodegenerative tauopathies. Brain. 2017;140:764–80. https://doi.org/10.1093/brain/aww339 .
doi: 10.1093/brain/aww339
pubmed: 28087578
pmcid: 5837223
Zhou J, Jangili P, Son S, Ji MS, Won M, Kim JS. Fluorescent diagnostic probes in neurodegenerative diseases. Adv Mater. 2020;n/a:2001945. https://doi.org/10.1002/adma.202001945 .
doi: 10.1002/adma.202001945
Ni R, Gillberg PG, Bogdanovic N, Viitanen M, Myllykangas L, Nennesmo I, et al. Amyloid tracers binding sites in autosomal dominant and sporadic Alzheimer’s disease. Alzheimers Dement. 2017;13:419–30. https://doi.org/10.1016/j.jalz.2016.08.006 .
doi: 10.1016/j.jalz.2016.08.006
pubmed: 27693181
Ni R, Dean-Ben XL, Kirschenbaum D, Rudin M, Chen Z, Crimi A, et al. Whole brain optoacoustic tomography reveals strain-specific regional beta-amyloid densities in Alzheimer’s disease amyloidosis models. bioRxiv. 2020:DOI: https://doi.org/10.1101/2020.02.25.964064 .
Ni R, Villois A, Dean-Ben XL, Chen Z, Vaas M, Stavrakis S, et al. In-vitro and in-vivo characterization of CRANAD-2 for multi-spectral optoacoustic tomography and fluorescence imaging of amyloid-beta deposits in Alzheimer mice. In: bioRxiv; 2020:2020.10.27.353862. https://doi.org/10.1101/2020.10.27.353862 .
doi: 10.1101/2020.10.27.353862
Ni R, Chen Z, Shi G, Villois A, Zhou Q, Arosio P, et al. Transcranial in vivo detection of amyloid-beta at single plaque resolution with large-field multifocal illumination fluorescence microscopy. bioRxiv. 2020:2020.02.01.929844. doi: https://doi.org/10.1101/2020.02.01.929844 .
Shirani H, Linares M, Sigurdson CJ, Lindgren M, Norman P, Nilsson KPR. A palette of fluorescent thiophene-based ligands for the identification of protein aggregates. Chemistry. 2015;21:15133–7. https://doi.org/10.1002/chem.201502999 .
doi: 10.1002/chem.201502999
pubmed: 26388448
pmcid: 4641461
Ni R, Chen Z, Gerez JA, Shi G, Zhou Q, Riek R, et al. Detection of cerebral tauopathy in P301L mice using high-resolution large-field multifocal illumination fluorescence microscopy. Biomed Opt Express. 2020;11:4989–5002. https://doi.org/10.1364/boe.395803 .
doi: 10.1364/boe.395803
pubmed: 33014595
pmcid: 7510859
Ni R, Gillberg PG, Bergfors A, Marutle A, Nordberg A. Amyloid tracers detect multiple binding sites in Alzheimer’s disease brain tissue. Brain. 2013;136:2217–27. https://doi.org/10.1093/brain/awt142 .
doi: 10.1093/brain/awt142
pubmed: 23757761
Rodriguez-Vieitez E, Ni R, Gulyas B, Toth M, Haggkvist J, Halldin C, et al. Astrocytosis precedes amyloid plaque deposition in Alzheimer APPswe transgenic mouse brain: a correlative positron emission tomography and in vitro imaging study. Eur J Nucl Med Mol Imaging. 2015;42:1119–32. https://doi.org/10.1007/s00259-015-3047-0 .
doi: 10.1007/s00259-015-3047-0
pubmed: 25893384
pmcid: 4424277
Ishikawa A, Tokunaga M, Maeda J, Minamihisamatsu T, Shimojo M, Takuwa H, et al. In vivo visualization of tau accumulation, microglial activation, and brain atrophy in a mouse model of tauopathy rTg4510. J Alzheimers Dis. 2018;61:1037–52. https://doi.org/10.3233/jad-170509 .
doi: 10.3233/jad-170509
pubmed: 29332041
Hu S, Yan P, Maslov K, Lee JM, Wang LV. Intravital imaging of amyloid plaques in a transgenic mouse model using optical-resolution photoacoustic microscopy. Opt Lett. 2009;34:3899–901. https://doi.org/10.1364/ol.34.003899 .
doi: 10.1364/ol.34.003899
pubmed: 20016651
pmcid: 2854007
Hintersteiner M, Enz A, Frey P, Jaton AL, Kinzy W, Kneuer R, et al. In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe. Nat Biotechnol. 2005;23:577–83. https://doi.org/10.1038/nbt1085 .
doi: 10.1038/nbt1085
pubmed: 15834405
Ran C, Xu X, Raymond SB, Ferrara BJ, Neal K, Bacskai BJ, et al. Design, synthesis, and testing of difluoroboron-derivatized curcumins as near-infrared probes for in vivo detection of amyloid-β deposits. J Am Chem Soc. 2009;131:15257–61. https://doi.org/10.1021/ja9047043 .
doi: 10.1021/ja9047043
pubmed: 19807070
pmcid: 2784241
Wang S, Sheng Z, Yang Z, Hu D, Long X, Feng G, et al. Activatable small-molecule photoacoustic probes that cross the blood-brain barrier for visualization of copper(II) in mice with Alzheimer’s disease. Angew Chem Int Ed Eng. 2019;58:12415–9. https://doi.org/10.1002/anie.201904047 .
doi: 10.1002/anie.201904047
Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79:1094–108. https://doi.org/10.1016/j.neuron.2013.07.037 .
doi: 10.1016/j.neuron.2013.07.037
pubmed: 24050400
Okamura N, Furumoto S, Fodero-Tavoletti MT, Mulligan RS, Harada R, Yates P, et al. Non-invasive assessment of Alzheimer’s disease neurofibrillary pathology using 18F-THK5105 PET. Brain. 2014;137:1762–71. https://doi.org/10.1093/brain/awu064 .
doi: 10.1093/brain/awu064
pubmed: 24681664
Verwilst P, Kim HS, Kim S, Kang C, Kim JS. Shedding light on tau protein aggregation: the progress in developing highly selective fluorophores. Chem Soc Rev. 2018;47:2249–65. https://doi.org/10.1039/c7cs00706j .
doi: 10.1039/c7cs00706j
pubmed: 29484335
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405. https://doi.org/10.1016/s1474-4422(15)70016-5 .
doi: 10.1016/s1474-4422(15)70016-5
pubmed: 25792098
pmcid: 25792098
Park S-J, Ho CJH, Arai S, Samanta A, Olivo M, Chang Y-T. Visualizing Alzheimer’s disease mouse brain with multispectral optoacoustic tomography using a fluorescent probe, CDnir7. Sci Rep. 2019;9:12052. https://doi.org/10.1038/s41598-019-48329-4 .
doi: 10.1038/s41598-019-48329-4
pubmed: 31427599
pmcid: 6700105
Klohs J. An integrated view on vascular dysfunction in Alzheimer’s disease. Neurodegener Dis. 2020. https://doi.org/10.1159/000505625 .
Klohs J, Deistung A, Ielacqua G, Seuwen A, Kindler D, Schweser F, et al. Quantitative assessment of microvasculopathy in arcAβ mice with USPIO-enhanced gradient echo MRI. J Cereb Blood Flow Metab. 2016;36:1614–24.
doi: 10.1177/0271678X15621500
Ielacqua GDSF, Füchtemeier M, Xandry J, Rudin M, Klohs J. Magnetic resonance q mapping reveals a decrease in microvessel density in the arcAβ mouse model of cerebral amyloidosis. Front Aging Neurosci. 2016;7:241.
doi: 10.3389/fnagi.2015.00241
Ni R, Kindler DR, Waag R, Rouault M, Ravikumar P, Nitsch R, et al. fMRI reveals mitigation of cerebrovascular dysfunction by bradykinin receptors 1 and 2 inhibitor noscapine in a mouse model of cerebral amyloidosis. Front Aging Neurosci. 2019;11:27. https://doi.org/10.3389/fnagi.2019.00027 .
doi: 10.3389/fnagi.2019.00027
pubmed: 30890928
pmcid: 6413713
Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67:181–98. https://doi.org/10.1016/j.neuron.2010.07.002 .
doi: 10.1016/j.neuron.2010.07.002
pubmed: 20670828
pmcid: 2957363
Kneipp M, Turner J, Hambauer S, Krieg SM, Lehmberg J, Lindauer U, et al. Functional real-time optoacoustic imaging of middle cerebral artery occlusion in mice. PLoS One. 2014;9:e96118. https://doi.org/10.1371/journal.pone.0096118 .
doi: 10.1371/journal.pone.0096118
pubmed: 24776997
pmcid: 4002478
Luo Y, Gong Z, Zhou Y, Chang B, Chai C, Liu T, et al. Increased susceptibility of asymmetrically prominent cortical veins correlates with misery perfusion in patients with occlusion of the middle cerebral artery. Eur Radiol. 2017;27:2381–90. https://doi.org/10.1007/s00330-016-4593-y .
doi: 10.1007/s00330-016-4593-y
pubmed: 27655300
Ni R, Vaas M, Ren W, Klohs J. Non-invasive detection of acute cerebral hypoxia and subsequent matrix-metalloproteinase activity in a mouse model of cerebral ischemia using multispectral-optoacoustic-tomography. Neurophotonics. 2018;5:015005. https://doi.org/10.1117/12.2286313 .
doi: 10.1117/12.2286313
pubmed: 29531962
pmcid: 5829216
Vaas M, Ni R, Rudin M, Kipar A, Klohs J. Extracerebral tissue damage in the intraluminal filament mouse model of middle cerebral artery occlusion. Front Neurol. 2017;8:85. https://doi.org/10.3389/fneur.2017.00085 .
doi: 10.3389/fneur.2017.00085
pubmed: 28348545
pmcid: 5347084
Lv J, Li S, Zhang J, Duan F, Wu Z, Chen R, et al. In vivo photoacoustic imaging dynamically monitors the structural and functional changes of ischemic stroke at a very early stage. Theranostics. 2020;10:816–28. https://doi.org/10.7150/thno.38554 .
doi: 10.7150/thno.38554
pubmed: 31903152
pmcid: 6929999
Bandla A, Liao LD, Chan SJ, Ling JM, Liu YH, Shih YI, et al. Simultaneous functional photoacoustic microscopy and electrocorticography reveal the impact of rtPA on dynamic neurovascular functions after cerebral ischemia. J Cereb Blood Flow Metab. 2018;38:980–95. https://doi.org/10.1177/0271678x17712399 .
doi: 10.1177/0271678x17712399
pubmed: 28685662
Sun YY, Li Y, Wali B, Li Y, Lee J, Heinmiller A, et al. Prophylactic edaravone prevents transient hypoxic-ischemic brain injury: implications for perioperative neuroprotection. Stroke. 2015;46:1947–55. https://doi.org/10.1161/strokeaha.115.009162 .
doi: 10.1161/strokeaha.115.009162
pubmed: 26060244
pmcid: 4480193
Rosenberg GA, Estrada EY, Dencoff JE. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke. 1998;29:2189–95. https://doi.org/10.1161/01.str.29.10.2189 .
doi: 10.1161/01.str.29.10.2189
pubmed: 9756602
Klohs J, Baeva N, Steinbrink J, Bourayou R, Boettcher C, Royl G, et al. In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia. J Cereb Blood Flow Metab. 2009;29:1284–92. https://doi.org/10.1038/jcbfm.2009.51 .
doi: 10.1038/jcbfm.2009.51
pubmed: 19417756
Devinsky O, Vezzani A, O'Brien TJ, Jette N, Scheffer IE, de Curtis M, et al. Epilepsy. Nat Rev Dis Primers. 2018;4:18024. https://doi.org/10.1038/nrdp.2018.24 .
doi: 10.1038/nrdp.2018.24
pubmed: 29722352
Ma H, Zhao M, Suh M, Schwartz TH. Hemodynamic surrogates for excitatory membrane potential change during interictal epileptiform events in rat neocortex. J Neurophysiol. 2009;101:2550–62. https://doi.org/10.1152/jn.90694.2008 .
doi: 10.1152/jn.90694.2008
pubmed: 19244357
pmcid: 2681426
Zhang Q, Liu Z, Carney PR, Yuan Z, Chen H, Roper SN, et al. Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography. Phys Med Biol. 2008;53:1921–31. https://doi.org/10.1088/0031-9155/53/7/008 .
doi: 10.1088/0031-9155/53/7/008
pubmed: 18364547
Wang B, Xiang L, Jiang MS, Yang J, Zhang Q, Carney PR, et al. Photoacoustic tomography system for noninvasive real-time three-dimensional imaging of epilepsy. Biomed Opt Expr. 2012;3:1427–32. https://doi.org/10.1364/BOE.3.001427 .
doi: 10.1364/BOE.3.001427
Xiang L, Ji L, Zhang T, Wang B, Yang J, Zhang Q, et al. Noninvasive real time tomographic imaging of epileptic foci and networks. NeuroImage. 2013;66:240–8. https://doi.org/10.1016/j.neuroimage.2012.10.077 .
doi: 10.1016/j.neuroimage.2012.10.077
pubmed: 23128072
Xiang L, Wang B, Ji L, Jiang H. 4-D photoacoustic tomography. Sci Rep. 2013;3:1113. https://doi.org/10.1038/srep01113 .
doi: 10.1038/srep01113
pubmed: 23346370
pmcid: 3552346
Wang B, Xiao J, Jiang H. Simultaneous real-time 3D photoacoustic tomography and EEG for neurovascular coupling study in an animal model of epilepsy. J Neural Eng. 2014;11:046013. https://doi.org/10.1088/1741-2560/11/4/046013 .
doi: 10.1088/1741-2560/11/4/046013
pubmed: 24940747
Zhang P, Li L, Lin L, Hu P, Shi J, He Y, et al. High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo. J Biophotonics. 2018;11:24. https://doi.org/10.1002/jbio.201700024 .
doi: 10.1002/jbio.201700024
Rao B, Zhang R, Li L, Shao J-Y, Wang LV. Photoacoustic imaging of voltage responses beyond the optical diffusion limit. Sc Rep. 2017;7:2560. https://doi.org/10.1038/s41598-017-02458-w .
doi: 10.1038/s41598-017-02458-w
Kang J, Zhang HK, Kadam SD, Fedorko J, Valentine H, Malla AP, et al. Transcranial recording of electrophysiological neural activity in the rodent brain in vivo using functional photoacoustic imaging of near-infrared voltage-sensitive dye. Front Neurosci. 2019;13. https://doi.org/10.3389/fnins.2019.00579 .
Kang J, Kadam SD, Elmore JS, Sullivan BJ, Valentine H, Malla AP, et al. Transcranial photoacoustic imaging of NMDA-evoked focal circuit dynamics in the rat hippocampus. J Neural Eng. 2020;17:025001. https://doi.org/10.1088/1741-2552/ab78ca .
doi: 10.1088/1741-2552/ab78ca
pubmed: 32084654
pmcid: 7145727
Lake EMR, Ge X, Shen X, Herman P, Hyder F, Cardin JA, et al. Simultaneous cortex-wide fluorescence Ca2+ imaging and whole-brain fMRI. Nat Methods. 2020. https://doi.org/10.1038/s41592-020-00984-6 .
Ren W, Skulason H, Schlegel F, Rudin M, Klohs J, Ni R. Automated registration of magnetic resonance imaging and optoacoustic tomography data for experimental studies. Neurophotonics. 2019;6:1–10. https://doi.org/10.1117/1.NPh.6.2.025001 .
doi: 10.1117/1.NPh.6.2.025001
Bouchard L-S, Anwar MS, Liu GL, Hann B, Xie ZH, Gray JW, et al. Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles. Proc Natl Acad Sci. 2009;106:4085–9. https://doi.org/10.1073/pnas.0813019106 .
doi: 10.1073/pnas.0813019106
pubmed: 19251659
pmcid: 2657430
Wang S, You Q, Wang J, Song Y, Cheng Y, Wang Y, et al. MSOT/CT/MR imaging-guided and hypoxia-maneuvered oxygen self-supply radiotherapy based on one-pot MnO(2)-mSiO(2)@Au nanoparticles. Nanoscale. 2019;11:6270–84. https://doi.org/10.1039/c9nr00918c .
doi: 10.1039/c9nr00918c
pubmed: 30882830
Ren W, Deán-Ben XL, Augath M-A, Razansky D. Development of concurrent magnetic resonance imaging and volumetric optoacoustic tomography: a phantom feasibility study. J Biophotonics. 2020;n/a:e202000293. https://doi.org/10.1002/jbio.202000293 .
doi: 10.1002/jbio.202000293
Chen Z, Mu X, Han Z, Yang S, Zhang C, Guo Z, et al. An optical/photoacoustic dual-modality probe: ratiometric in/ex vivo imaging for stimulated H2S upregulation in mice. J Am Chem Soc. 2019;141:17973–7. https://doi.org/10.1021/jacs.9b09181 .
doi: 10.1021/jacs.9b09181
pubmed: 31657918
Chen H, Huang Y, Li B, Liao W, Zhang G, Lin Z. Efficient orthogonally polarized dual-wavelength Nd:LaMgB5O10 laser. Opt Lett. 2015;40:4659–62. https://doi.org/10.1364/OL.40.004659 .
doi: 10.1364/OL.40.004659
pubmed: 26469588
Ivan O, Elena M, Neal CB, Saak VO, Vasilis N. Hybrid multispectral optoacoustic and ultrasound tomography for morphological and physiological brain imaging. J Biomed Opt. 2016;21:1–10. https://doi.org/10.1117/1.JBO.21.8.086005 .
doi: 10.1117/1.JBO.21.8.086005
Moreaux LC, Yatsenko D, Sacher WD, Choi J, Lee C, Kubat NJ, et al. Integrated neurophotonics: toward dense volumetric interrogation of brain circuit activity—at depth and in real time. Neuron. 2020;108:66–92. https://doi.org/10.1016/j.neuron.2020.09.043 .
doi: 10.1016/j.neuron.2020.09.043
pubmed: 33058767
pmcid: 8061790
Ovsepian SV, Jiang Y, Sardella TCP, Malekzadeh-Najafabadi J, Burton NC, Yu X, et al. Visualizing cortical response to optogenetic stimulation and sensory inputs using multispectral handheld optoacoustic imaging. Photoacoustics. 2020;17:100153. https://doi.org/10.1016/j.pacs.2019.100153 .
doi: 10.1016/j.pacs.2019.100153
pubmed: 32154103
Degtyaruk O, Mc Larney B, Deán-Ben X, Shoham S, Razansky D. Optoacoustic calcium imaging of deep brain activity in an intracardially perfused mouse brain model. Photonics. 2019;6:67. https://doi.org/10.3390/photonics6020067 .
doi: 10.3390/photonics6020067
Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods. 2005;2:932–40. https://doi.org/10.1038/nmeth818 .
doi: 10.1038/nmeth818
pubmed: 16299478
Kleinfeld D, Mitra PP, Helmchen F, Denk W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc Natl Acad Sci. 1998;95:15741. https://doi.org/10.1073/pnas.95.26.15741 .
doi: 10.1073/pnas.95.26.15741
pubmed: 9861040
pmcid: 28114
Adam Y, Kim JJ, Lou S, Zhao Y, Xie ME, Brinks D, et al. Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics. Nature. 2019;569:413–7. https://doi.org/10.1038/s41586-019-1166-7 .
doi: 10.1038/s41586-019-1166-7
pubmed: 31043747
pmcid: 6613938
Kim TI, McCall JG, Jung YH, Huang X, Siuda ER, Li Y, et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science. 2013;340:211–6. https://doi.org/10.1126/science.1232437 .
doi: 10.1126/science.1232437
pubmed: 23580530
pmcid: 3769938
Deisseroth K. Optogenetics. Nat Methods. 2011;8:26–9. https://doi.org/10.1038/nmeth.f.324 .
doi: 10.1038/nmeth.f.324
pubmed: 21191368
Roth BL. DREADDs for Neuroscientists. Neuron. 2016;89:683–94. https://doi.org/10.1016/j.neuron.2016.01.040 .
doi: 10.1016/j.neuron.2016.01.040
pubmed: 26889809
pmcid: 4759656
Brochu FM, Brunker J, Joseph J, Tomaszewski MR, Morscher S, Bohndiek SE. Towards quantitative evaluation of tissue absorption coefficients using light fluence correction in optoacoustic tomography. IEEE Trans Med Imaging. 2017;36:322–31. https://doi.org/10.1109/tmi.2016.2607199 .
doi: 10.1109/tmi.2016.2607199
pubmed: 27623576
Tzoumas S, Nunes A, Olefir I, Stangl S, Symvoulidis P, Glasl S, et al. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues. Nat Commun. 2016;7:12121. https://doi.org/10.1038/ncomms12121 .
doi: 10.1038/ncomms12121
pubmed: 27358000
pmcid: 4931322
Guo X, Ding Y, Duan Y, Ni X. Nonreciprocal metasurface with space–time phase modulation. Light: Sci & Appl. 2019;8:123. https://doi.org/10.1038/s41377-019-0225-z .
doi: 10.1038/s41377-019-0225-z
Ding L, Dean-Ben XL, Burton NC, Sobol RW, Ntziachristos V, Razansky D. Constrained inversion and spectral unmixing in multispectral optoacoustic tomography. IEEE Trans Med Imaging. 2017;36:1676–85. https://doi.org/10.1109/TMI.2017.2686006 .
doi: 10.1109/TMI.2017.2686006
pubmed: 28333622
pmcid: 5585740
Rosenthal A, Ntziachristos V, Razansky D. Optoacoustic methods for frequency calibration of ultrasonic sensors. IEEE Trans Ultrason Ferroelectr Freq Control. 2011;58:316–26. https://doi.org/10.1109/TUFFC.2011.1809 .
doi: 10.1109/TUFFC.2011.1809
pubmed: 21342817
Davoudi N, Deán-Ben XL, Razansky D. Deep learning optoacoustic tomography with sparse data. Nat Machine Intelligence. 2019;1:453–60. https://doi.org/10.1038/s42256-019-0095-3 .
doi: 10.1038/s42256-019-0095-3
Lan H, Jiang D, Yang C, Gao F, Gao F. Y-Net: Hybrid deep learning image reconstruction for photoacoustic tomography in vivo. Photoacoustics. 2020;20:100197. https://doi.org/10.1016/j.pacs.2020.100197 .
doi: 10.1016/j.pacs.2020.100197
pubmed: 32612929
pmcid: 7322183
Lafci B, Mercep E, Morscher S, Dean-Ben XL, Razansky D. Deep learning for automatic segmentation of hybrid optoacoustic ultrasound (OPUS) images. IEEE Trans Ultrason Ferroelectr Freq Control. 2020. https://doi.org/10.1109/tuffc.2020.3022324 .
Allman D, Reiter A, Bell MAL. Photoacoustic source detection and reflection artifact removal enabled by deep learning. IEEE Trans Med Imaging. 2018;37:1464–77. https://doi.org/10.1109/TMI.2018.2829662 .
doi: 10.1109/TMI.2018.2829662
pubmed: 29870374
pmcid: 6075868
Olefir I, Tzoumas S, Restivo C, Mohajerani P, Xing L, Ntziachristos V. Deep learning based spectral unmixing for optoacoustic imaging of tissue oxygen saturation. IEEE Trans Med Imaging. 2020. doi: https://doi.org/10.1109/tmi.2020.3001750 .
Masthoff M, Helfen A, Claussen J, Karlas A, Markwardt NA, Ntziachristos V, et al. Use of multispectral optoacoustic tomography to diagnose vascular malformations. JAMA Dermatol. 2018;154:1457–62. https://doi.org/10.1001/jamadermatol.2018.3269 .
doi: 10.1001/jamadermatol.2018.3269
pubmed: 30267083
pmcid: 6583374
Knieling F, Neufert C, Hartmann A, Claussen J, Urich A, Egger C, et al. Multispectral optoacoustic tomography for assessment of Crohn’s disease activity. N Engl J Med. 2017;376:1292–4. https://doi.org/10.1056/NEJMc1612455 .
doi: 10.1056/NEJMc1612455
pubmed: 28355498
Deán-Ben XL, Razansky D. Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths. Opt Express. 2013;21:28062–71. https://doi.org/10.1364/OE.21.028062 .
doi: 10.1364/OE.21.028062
pubmed: 24514320
Ivankovic I, Merčep E, Schmedt CG, Deán-Ben XL, Razansky D. Real-time volumetric assessment of the human carotid artery: handheld multispectral optoacoustic tomography. Radiology. 2019;291:45–50. https://doi.org/10.1148/radiol.2019181325 .
doi: 10.1148/radiol.2019181325
pubmed: 30747592
Waterhouse DJ, Fitzpatrick CRM, Pogue BW, O’Connor JPB, Bohndiek SE. A roadmap for the clinical implementation of optical-imaging biomarkers. Nat Biomed Eng. 2019;3:339–53. https://doi.org/10.1038/s41551-019-0392-5 .
doi: 10.1038/s41551-019-0392-5
pubmed: 31036890
Joseph J, Tomaszewski MR, Quiros-Gonzalez I, Weber J, Brunker J, Bohndiek SE. Evaluation of precision in optoacoustic tomography for preclinical imaging in living subjects. J Nucl Med. 2017;58:807–14. https://doi.org/10.2967/jnumed.116.182311 .
doi: 10.2967/jnumed.116.182311
pubmed: 28126890
Nasiriavanaki M, Xia J, Wan H, Bauer AQ, Culver JP, Wang LV. High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain. Proc Natl Acad Sci. 2014;111:21. https://doi.org/10.1073/pnas.1311868111 .
doi: 10.1073/pnas.1311868111
pubmed: 24367107
Matthews TP, Zhang C, Yao D-K, Maslov K, Wang LV. Label-free photoacoustic microscopy of peripheral nerves. J Biomed Opt. 2014;19:16004. https://doi.org/10.1117/1.JBO.19.1.016004 .
doi: 10.1117/1.JBO.19.1.016004
pubmed: 24395587
Wu W, Wang P, Cheng JX, Xu XM. Assessment of white matter loss using bond-selective photoacoustic imaging in a rat model of contusive spinal cord injury. J Neurotrauma. 2014;31:1998–2002. https://doi.org/10.1089/neu.2014.3349 .
doi: 10.1089/neu.2014.3349
pubmed: 24850066
pmcid: 4245875
Changalvaie B, Han S, Moaseri E, Scaletti F, Truong L, Caplan R, et al. Indocyanine green J aggregates in polymersomes for near-infrared photoacoustic imaging. ACS Appl Mater Interfaces. 2019;11:46437–50. https://doi.org/10.1021/acsami.9b14519 .
doi: 10.1021/acsami.9b14519
pubmed: 31804795
Kubelick KP, Emelianov SY. Prussian blue nanocubes as a multimodal contrast agent for image-guided stem cell therapy of the spinal cord. Photoacoustics. 2020;18:100166. https://doi.org/10.1016/j.pacs.2020.100166 .
doi: 10.1016/j.pacs.2020.100166
pubmed: 32211291
pmcid: 7082547
Wang L, Xie S, Wang Z, Liu F, Yang Y, Tang C, et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat Biomed Eng. 2020;4:159–71. https://doi.org/10.1038/s41551-019-0462-8 .
doi: 10.1038/s41551-019-0462-8
pubmed: 31659307
De La Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol. 2008;3:557–62. https://doi.org/10.1038/nnano.2008.231 .
doi: 10.1038/nnano.2008.231
pubmed: 18772918
Cai K, Zhang W, Foda MF, Li X, Zhang J, Zhong Y, et al. Miniature hollow gold nanorods with enhanced effect for in vivo photoacoustic imaging in the NIR-II window. Small. 2020;16:e2002748. https://doi.org/10.1002/smll.202002748 .
doi: 10.1002/smll.202002748
pubmed: 32780938
Zhang H, Wang T, Qiu W, Han Y, Sun Q, Zeng J, et al. Monitoring the opening and recovery of the blood-brain barrier with noninvasive molecular imaging by biodegradable ultrasmall Cu(2- x)Se nanoparticles. Nano Lett. 2018;18:4985–92. https://doi.org/10.1021/acs.nanolett.8b01818 .
doi: 10.1021/acs.nanolett.8b01818
pubmed: 29995426
Wang Y, Hu X, Weng J, Li J, Fan Q, Zhang Y, et al. A photoacoustic probe for the imaging of tumor apoptosis by caspase-mediated macrocyclization and self-assembly. Angew Chem Int Ed Eng. 2019;58:4886–90. https://doi.org/10.1002/anie.201813748 .
doi: 10.1002/anie.201813748
Li Z, Fu Q, Ye J, Ge X, Wang J, Song J, et al. Ag(+) -coupled black phosphorus vesicles with emerging NIR-II photoacoustic imaging performance for cancer immune-dynamic therapy and fast wound healing. Angew Chem Int Ed Eng. 2020. https://doi.org/10.1002/anie.202009609 .
Jiang Y, Upputuri PK, Xie C, Zeng Z, Sharma A, Zhen X, et al. Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. Adv Mater. 2019;31:1808166. https://doi.org/10.1002/adma.201808166 .
doi: 10.1002/adma.201808166
Lyu Y, Zeng J, Jiang Y, Zhen X, Wang T, Qiu S, et al. Enhancing both biodegradability and efficacy of semiconducting polymer nanoparticles for photoacoustic imaging and photothermal therapy. ACS Nano. 2018;12:1801–10. https://doi.org/10.1021/acsnano.7b08616 .
doi: 10.1021/acsnano.7b08616
pubmed: 29385336
Jiang Y, Upputuri PK, Xie C, Lyu Y, Zhang L, Xiong Q, et al. Broadband absorbing semiconducting polymer nanoparticles for photoacoustic imaging in second near-infrared window. Nano Lett. 2017;17:4964–9. https://doi.org/10.1021/acs.nanolett.7b02106 .
doi: 10.1021/acs.nanolett.7b02106
pubmed: 28654292
Taruttis A, Herzog E, Razansky D, Ntziachristos V. Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography. Opt Express. 2010;18:19592–602. https://doi.org/10.1364/oe.18.019592 .
doi: 10.1364/oe.18.019592
pubmed: 20940855