Cortical bone thickness predicts the quantitative bone mineral density of the proximal humerus.
Cortical index
Fracture
Humerus
Microstructure
Osteoporosis
Radius
Journal
Archives of osteoporosis
ISSN: 1862-3514
Titre abrégé: Arch Osteoporos
Pays: England
ID NLM: 101318988
Informations de publication
Date de publication:
16 02 2021
16 02 2021
Historique:
received:
06
09
2020
accepted:
12
01
2021
entrez:
17
2
2021
pubmed:
18
2
2021
medline:
2
3
2021
Statut:
epublish
Résumé
Cortical thickness determined at the humerus can serve as an easy and reliable screening tool to predict the local bone status when quantitative bone mineral density (BMD) measurements are not available. It can therefore serve as a rapid screening tool in fragility fractures to identify patients requiring further diagnostic or osteoporosis treatment. Quantitative bone mineral density (BMD) of the humerus is difficult to determine but relevant for osteoporosis and fracture treatment. Dual-energy X-ray absorptiometry (DXA) of the femur and lumbar spine overestimates the humeral BMD and is not ubiquitously available. Therefore, this study evaluated whether the cortical bone thickness (CBT) of the humerus or DXA of the forearm is able to predict humeral BMD. Humeral BMD of 54 upper cadaver extremities (22 pairs, 10 single) (19-90 years) was determined by high-resolution peripheral-quantitative-computed-tomography (HR-pQCT) (volumetric BMD (vBMD)) and DXA (areal BMD (aBMD)) of the proximal humerus and distal forearm. Average and gauge cortical bone thickness (CBTavg/ CBTg) of the humeral diaphysis was determined from standard radiographs (XR) and computed-tomography (CT) and compared to the humeral BMD. Pearson (r) and intraclass-correlation-coefficients (ICC) were used to compare results and rater-reliability. CBTavg from XR strongly correlated with the humeral BMD (r = 0.78 aBMD (DXA) and r = 0.64 vBMD (HR-pQCT) (p < 0.0001)). The CBTg revealed a weaker correlation (r = 0.57 aBMD and r = 0.43 vBMD). CBT derived from XR strongly correlated to those from the CT (r = 0.82-0.90) and showed an excellent intra- and inter-rater correlation (ICC 0.79-0.92). Distal forearm aBMD correlated well with the humeral aBMD (DXA) (r = 0.77) and paired specimens highly correlated to the contralateral side (humerus r = 0.89, radius r = 0.97). The CBTavg can reliably be determined from standard radiographs and allows a good prediction of quantitative humeral bone mineral density (aBMD or vBMD) if measurements are not available. Furthermore, the distal forearm or the contralateral humerus can serve as a side to estimate the BMD if the ipsilateral side is impaired.
Identifiants
pubmed: 33594610
doi: 10.1007/s11657-021-00896-8
pii: 10.1007/s11657-021-00896-8
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
33Références
Lee SH, Dargent-Molina P, Breart G, Study EGEdlO (2002) Risk factors for fractures of the proximal humerus: results from the EPIDOS prospective study. J Bone Miner Res 17(5):817–825. https://doi.org/10.1359/jbmr.2002.17.5.817
doi: 10.1359/jbmr.2002.17.5.817
pubmed: 12009012
Kanis JA, Harvey NC, McCloskey E, Bruyere O, Veronese N, Lorentzon M, Cooper C, Rizzoli R, Adib G, Al-Daghri N, Campusano C, Chandran M, Dawson-Hughes B, Javaid K, Jiwa F, Johansson H, Lee JK, Liu E, Messina D, Mkinsi O, Pinto D, Prieto-Alhambra D, Saag K, Xia W, Zakraoui L, Reginster J (2020) Algorithm for the management of patients at low, high and very high risk of osteoporotic fractures. Osteoporos Int 31(1):1–12. https://doi.org/10.1007/s00198-019-05176-3
doi: 10.1007/s00198-019-05176-3
Egol KA, Ong CC, Walsh M, Jazrawi LM, Tejwani NC, Zuckerman JD (2008) Early complications in proximal humerus fractures (OTA Types 11) treated with locked plates. J Orthop Trauma 22(3):159–164. https://doi.org/10.1097/BOT.0b013e318169ef2a
doi: 10.1097/BOT.0b013e318169ef2a
pubmed: 18317048
Schneider E, Goldhahn J, Burckhardt P (2005) The challenge: fracture treatment in osteoporotic bone. Osteoporos Int 16(Suppl 2):S1–S2. https://doi.org/10.1007/s00198-004-1766-3
doi: 10.1007/s00198-004-1766-3
pubmed: 15536536
Clinton J, Franta A, Polissar NL, Neradilek B, Mounce D, Fink HA, Schousboe JT, Matsen FA 3rd (2009) Proximal humeral fracture as a risk factor for subsequent hip fractures. J Bone Joint Surg Am 91(3):503–511. https://doi.org/10.2106/JBJS.G.01529
doi: 10.2106/JBJS.G.01529
pubmed: 19255209
pmcid: 19255209
Wilson J, Bonner TJ, Head M, Fordham J, Brealey S, Rangan A (2009) Variation in bone mineral density by anatomical site in patients with proximal humeral fractures. J Bone Joint Surg Br 91(6):772–775. https://doi.org/10.1302/0301-620X.91B6.22346
doi: 10.1302/0301-620X.91B6.22346
pubmed: 19483231
Handa A, Uchiyama Y, Shinpuku E, Watanabe M (2019) Comparison of three plain radiography methods for evaluating proximal humerus bone strength in women. J Orthop Sci 24(2):243–249. https://doi.org/10.1016/j.jos.2018.09.020
doi: 10.1016/j.jos.2018.09.020
pubmed: 30361168
Curtis JR, Laster A, Becker DJ, Carbone L, Gary LC, Kilgore ML, Matthews RS, Morrisey MA, Saag KG, Tanner SB, Delzell E (2009) The geographic availability and associated utilization of dual-energy X-ray absorptiometry (DXA) testing among older persons in the United States. Osteoporos Int 20(9):1553–1561. https://doi.org/10.1007/s00198-008-0821-x
doi: 10.1007/s00198-008-0821-x
pubmed: 19107383
McCloskey E, Rathi J, Heijmans S, Blagden M, Cortet B, Czerwinski E, Hadji P, Payer J, Palmer K, Stad R, O'Kelly J, Papapoulos S (2020) The osteoporosis treatment gap in patients at risk of fracture in European primary care: a multi-country cross-sectional observational study. Osteoporos Int 32:251–259. https://doi.org/10.1007/s00198-020-05557-z
doi: 10.1007/s00198-020-05557-z
pubmed: 32829471
Giannotti S, Bottai V, Dell'osso G, Donati D, Bugelli G, De Paola G, Guido G (2012) Indices of risk assessment of fracture of the proximal humerus. Clin Cases Miner Bone Metab 9(1):37–39
pubmed: 22783334
Hepp P, Theopold J, Osterhoff G, Marquass B, Voigt C, Josten C (2009) Bone quality measured by the radiogrammetric parameter "cortical index" and reoperations after locking plate osteosynthesis in patients sustaining proximal humerus fractures. Arch Orthop Trauma Surg 129(9):1251–1259. https://doi.org/10.1007/s00402-009-0889-6
doi: 10.1007/s00402-009-0889-6
pubmed: 19440726
Mather J, MacDermid JC, Faber KJ, Athwal GS (2013) Proximal humerus cortical bone thickness correlates with bone mineral density and can clinically rule out osteoporosis. J Shoulder Elb Surg 22(6):732–738. https://doi.org/10.1016/j.jse.2012.08.018
doi: 10.1016/j.jse.2012.08.018
Tingart MJ, Apreleva M, von Stechow D, Zurakowski D, Warner JJ (2003) The cortical thickness of the proximal humeral diaphysis predicts bone mineral density of the proximal humerus. J Bone Joint Surg Br 85(4):611–617
doi: 10.1302/0301-620X.85B4.12843
Wang Y, Li J, Yang J, Dong J (2019) Regional characteristics of cortical bone quality in the proximal humerus of postmenopausal women: a preliminary study. J Shoulder Elb Surg 28(4):685–691. https://doi.org/10.1016/j.jse.2018.09.001
doi: 10.1016/j.jse.2018.09.001
Skedros JG, Knight AN, Pitts TC, O'Rourke PJ, Burkhead WZ (2016) Radiographic morphometry and densitometry predict strength of cadaveric proximal humeri more reliably than age and DXA scan density. J Orthop Res 34(2):331–341. https://doi.org/10.1002/jor.22994
doi: 10.1002/jor.22994
pubmed: 26218571
den Teuling J, Pauwels BS, Janssen L, Wyers CE, Janzing HMJ, van den Bergh JPW, Morrenhof JW (2017) The influence of bone mineral density and cortical index on the complexity of fractures of the proximal humerus. Bone Joint Res 6(10):584–589. https://doi.org/10.1302/2046-3758.610.BJR-2017-0080
doi: 10.1302/2046-3758.610.BJR-2017-0080
Helfen T, Sprecher CM, Eberli U, Gueorguiev B, Muller PE, Richards RG, Schmidutz F (2017) High-resolution tomography-based quantification of cortical porosity and cortical thickness at the surgical neck of the humerus during aging. Calcif Tissue Int 101(3):271–279. https://doi.org/10.1007/s00223-017-0279-y
doi: 10.1007/s00223-017-0279-y
pubmed: 28432379
Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428
doi: 10.1037/0033-2909.86.2.420
Spross C, Kaestle N, Benninger E, Fornaro J, Erhardt J, Zdravkovic V, Jost B (2015) Deltoid tuberosity index: a simple radiographic tool to assess local bone quality in proximal humerus fractures. Clin Orthop Relat Res 473(9):3038–3045. https://doi.org/10.1007/s11999-015-4322-x
doi: 10.1007/s11999-015-4322-x
pubmed: 25910780
Skedros JG, Mears CS, Burkhead WZ (2017) Ultimate fracture load of cadaver proximal humeri correlates more strongly with mean combined cortical thickness than with areal cortical index, DEXA density, or canal-to-calcar ratio. Bone Joint Res 6(1):1–7. https://doi.org/10.1302/2046-3758.61.BJR-2016-0145.R1
doi: 10.1302/2046-3758.61.BJR-2016-0145.R1
pubmed: 28057631
pmcid: 5227054
Rausch S, Klos K, Gras F, Skulev HK, Popp A, Hofmann GO, Muckley T (2013) Utility of the cortical thickness of the distal radius as a predictor of distal-radius bone density. Arch Trauma Res 2(1):11–15. https://doi.org/10.5812/atr.10687
doi: 10.5812/atr.10687
pubmed: 24396783
pmcid: 3876515
He QF, Sun H, Shu LY, Zhu Y, Xie XT, Zhan Y, Luo CF (2018) Radiographic predictors for bone mineral loss: cortical thickness and index of the distal femur. Bone Joint Res 7(7):468–475. https://doi.org/10.1302/2046-3758.77.BJR-2017-0332.R1
doi: 10.1302/2046-3758.77.BJR-2017-0332.R1
pubmed: 30123496
pmcid: 6076359
Diederichs G, Korner J, Goldhahn J, Linke B (2006) Assessment of bone quality in the proximal humerus by measurement of the contralateral site: a cadaveric analyze. Arch Orthop Trauma Surg 126(2):93–100. https://doi.org/10.1007/s00402-006-0103-z
doi: 10.1007/s00402-006-0103-z
pubmed: 16456662
Groll O, Lochmuller EM, Bachmeier M, Willnecker J, Eckstein F (1999) Precision and intersite correlation of bone densitometry at the radius, tibia and femur with peripheral quantitative CT. Skelet Radiol 28(12):696–702
doi: 10.1007/s002560050576
Arlot ME, Sornay-Rendu E, Garnero P, Vey-Marty B, Delmas PD (1997) Apparent pre- and postmenopausal bone loss evaluated by DXA at different skeletal sites in women: the OFELY cohort. J Bone Miner Res 12(4):683–690. https://doi.org/10.1359/jbmr.1997.12.4.683
doi: 10.1359/jbmr.1997.12.4.683
pubmed: 9101381
Krasniqi E, Koni M, Kabashi A, Bahtiri A, Gjeli S, Boshnjaku A (2016) Side to side differences between dominant and non-dominant arm’s bone density and isometric handgrip strength in males and females aged 40-65 years old. Mater Soc 28(5):333–337. https://doi.org/10.5455/msm.2016.28.333-337
doi: 10.5455/msm.2016.28.333-337
van Santen JA, Pereira C, Sanchez-Santos MT, Cooper C, Arden NK (2019) Dominant vs. non-dominant hip comparison in bone mineral density in young sporting athletes. Arch Osteoporos 14(1):54. https://doi.org/10.1007/s11657-019-0605-2
doi: 10.1007/s11657-019-0605-2
pubmed: 31129723
Thu WPP, Logan SJS, Cauley JA, Kramer MS, Yong EL (2019) Ethnic differences in bone mineral density among midlife women in a multi-ethnic Southeast Asian cohort. Arch Osteoporos 14(1):80. https://doi.org/10.1007/s11657-019-0631-0
doi: 10.1007/s11657-019-0631-0
pubmed: 31324992
Nam HS, Shin MH, Zmuda JM, Leung PC, Barrett-Connor E, Orwoll ES, Cauley JA, Osteoporotic Fractures in Men Research G (2010) Race/ethnic differences in bone mineral densities in older men. Osteoporos Int 21(12):2115–2123. https://doi.org/10.1007/s00198-010-1188-3
doi: 10.1007/s00198-010-1188-3
pubmed: 20204598
Popp KL, Hughes JM, Martinez-Betancourt A, Scott M, Turkington V, Caksa S, Guerriere KI, Ackerman KE, Xu C, Unnikrishnan G, Reifman J, Bouxsein ML (2017) Bone mass, microarchitecture and strength are influenced by race/ethnicity in young adult men and women. Bone 103:200–208. https://doi.org/10.1016/j.bone.2017.07.014
doi: 10.1016/j.bone.2017.07.014
pubmed: 28712877
Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375(9727):1729–1736. https://doi.org/10.1016/S0140-6736(10)60320-0
doi: 10.1016/S0140-6736(10)60320-0
pubmed: 20472174
Bala Y, Zebaze R, Seeman E (2015) Role of cortical bone in bone fragility. Curr Opin Rheumatol 27(4):406–413. https://doi.org/10.1097/BOR.0000000000000183
doi: 10.1097/BOR.0000000000000183
pubmed: 26002033
Krappinger D, Roth T, Gschwentner M, Suckert A, Blauth M, Hengg C, Kralinger F (2012) Preoperative assessment of the cancellous bone mineral density of the proximal humerus using CT data. Skelet Radiol 41(3):299–304. https://doi.org/10.1007/s00256-011-1174-7
doi: 10.1007/s00256-011-1174-7