Restoration of bilateral motor coordination from preserved agonist-antagonist coupling in amputation musculature.
Adult
Algorithms
Amputation, Surgical
Artificial Limbs
Biomechanical Phenomena
Electromyography
/ methods
Feedback, Sensory
/ physiology
Female
Humans
Male
Middle Aged
Models, Neurological
Movement
/ physiology
Muscle, Skeletal
/ physiopathology
Psychomotor Performance
/ physiology
Signal Processing, Computer-Assisted
User-Computer Interface
Agonist-antagonist myoneural interface
Myoelectric prosthesis
Neural control of movement
Neuromuscular modeling
Journal
Journal of neuroengineering and rehabilitation
ISSN: 1743-0003
Titre abrégé: J Neuroeng Rehabil
Pays: England
ID NLM: 101232233
Informations de publication
Date de publication:
17 02 2021
17 02 2021
Historique:
received:
10
11
2020
accepted:
26
01
2021
entrez:
18
2
2021
pubmed:
19
2
2021
medline:
9
6
2021
Statut:
epublish
Résumé
Neuroprosthetic devices controlled by persons with standard limb amputation often lack the dexterity of the physiological limb due to limitations of both the user's ability to output accurate control signals and the control system's ability to formulate dynamic trajectories from those signals. To restore full limb functionality to persons with amputation, it is necessary to first deduce and quantify the motor performance of the missing limbs, then meet these performance requirements through direct, volitional control of neuroprosthetic devices. We develop a neuromuscular modeling and optimization paradigm for the agonist-antagonist myoneural interface, a novel tissue architecture and neural interface for the control of myoelectric prostheses, that enables it to generate virtual joint trajectories coordinated with an intact biological joint at full physiologically-relevant movement bandwidth. In this investigation, a baseline of performance is first established in a population of non-amputee control subjects ([Formula: see text]). Then, a neuromuscular modeling and optimization technique is advanced that allows unilateral AMI amputation subjects ([Formula: see text]) and standard amputation subjects ([Formula: see text]) to generate virtual subtalar prosthetic joint kinematics using measured surface electromyography (sEMG) signals generated by musculature within the affected leg residuum. Using their optimized neuromuscular subtalar models under blindfolded conditions with only proprioceptive feedback, AMI amputation subjects demonstrate bilateral subtalar coordination accuracy not significantly different from that of the non-amputee control group (Kolmogorov-Smirnov test, [Formula: see text]) while standard amputation subjects demonstrate significantly poorer performance (Kolmogorov-Smirnov test, [Formula: see text]). These results suggest that the absence of an intact biological joint does not necessarily remove the ability to produce neurophysical signals with sufficient information to reconstruct physiological movements. Further, the seamless manner in which virtual and intact biological joints are shown to coordinate reinforces the theory that desired movement trajectories are mentally formulated in an abstract task space which does not depend on physical limb configurations.
Sections du résumé
BACKGROUND
Neuroprosthetic devices controlled by persons with standard limb amputation often lack the dexterity of the physiological limb due to limitations of both the user's ability to output accurate control signals and the control system's ability to formulate dynamic trajectories from those signals. To restore full limb functionality to persons with amputation, it is necessary to first deduce and quantify the motor performance of the missing limbs, then meet these performance requirements through direct, volitional control of neuroprosthetic devices.
METHODS
We develop a neuromuscular modeling and optimization paradigm for the agonist-antagonist myoneural interface, a novel tissue architecture and neural interface for the control of myoelectric prostheses, that enables it to generate virtual joint trajectories coordinated with an intact biological joint at full physiologically-relevant movement bandwidth. In this investigation, a baseline of performance is first established in a population of non-amputee control subjects ([Formula: see text]). Then, a neuromuscular modeling and optimization technique is advanced that allows unilateral AMI amputation subjects ([Formula: see text]) and standard amputation subjects ([Formula: see text]) to generate virtual subtalar prosthetic joint kinematics using measured surface electromyography (sEMG) signals generated by musculature within the affected leg residuum.
RESULTS
Using their optimized neuromuscular subtalar models under blindfolded conditions with only proprioceptive feedback, AMI amputation subjects demonstrate bilateral subtalar coordination accuracy not significantly different from that of the non-amputee control group (Kolmogorov-Smirnov test, [Formula: see text]) while standard amputation subjects demonstrate significantly poorer performance (Kolmogorov-Smirnov test, [Formula: see text]).
CONCLUSIONS
These results suggest that the absence of an intact biological joint does not necessarily remove the ability to produce neurophysical signals with sufficient information to reconstruct physiological movements. Further, the seamless manner in which virtual and intact biological joints are shown to coordinate reinforces the theory that desired movement trajectories are mentally formulated in an abstract task space which does not depend on physical limb configurations.
Identifiants
pubmed: 33596960
doi: 10.1186/s12984-021-00829-z
pii: 10.1186/s12984-021-00829-z
pmc: PMC7891024
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
38Subventions
Organisme : NICHD NIH HHS
ID : R01 HD097135
Pays : United States
Organisme : NIH HHS
ID : 1R01HD097135
Pays : United States
Commentaires et corrections
Type : ErratumIn
Références
Ortiz-Catalan M, Håkansson B, Brånemark R. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci Transl Med. 2014;6(257):257–66. https://doi.org/10.1126/scitranslmed.3008933 .
doi: 10.1126/scitranslmed.3008933
Page DM, George JA, Kluger DT, Duncan C, Wendelken S, Davis T, Hutchinson DT, Clark GA. Motor control and sensory feedback enhance prosthesis embodiment and reduce phantom pain after long-term hand amputation. Front Hum Neurosci. 2018;12:1. https://doi.org/10.3389/fnhum.2018.00352 .
doi: 10.3389/fnhum.2018.00352
Clippinger FW, Avery R, Titus BR. A sensory feedback system for an upper-limb amputation prosthesis. Bull Prosth Res Fall. 1974;12:247–58.
Clippinger FW, Seaber AV, McElhaney JH, Harrelson JM, Maxwell GM. Afferent sensory feedback for lower extremity prosthesis. Clin Orthopaed Relat Res. 1982;169:202–6.
Markovic M, Schweisfurth MA, Engels LF, Bentz T, Wüstefeld D, Farina D, Dosen S. The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis. J NeuroEng Rehabili. 2018;15(1):1–15. https://doi.org/10.1186/s12984-018-0371-1 .
doi: 10.1186/s12984-018-0371-1
Wendelken S, Page DM, Davis T, Wark HAC, Kluger DT, Duncan C, Warren DJ, Hutchinson DT, Clark GA. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple utah slanted electrode arrays (useas) implanted in residual peripheral arm nerves. J Neuroeng Rehabil. 2017;14(1):121. https://doi.org/10.1186/s12984-017-0320-4 .
doi: 10.1186/s12984-017-0320-4
pubmed: 29178940
pmcid: 5702130
Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, Di Pino G, Carpaneto J, Controzzi M, Boretius T, Fernandez E, Granata G, Oddo CM, Citi L, Ciancio AL, Cipriani C, Carrozza MC, Jensen W, Guglielmelli E, Stieglitz T, Rossini PM, Micera S. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci Transl Med. 2014;6(222):222–319. https://doi.org/10.1126/scitranslmed.3006820 .
doi: 10.1126/scitranslmed.3006820
Mastinu E, Clemente F, Sassu P, Aszmann O, Brånemark R, Håkansson B, Controzzi M, Cipriani C, Ortiz-Catalan M. Grip control and motor coordination with implanted and surface electrodes while grasping with an osseointegrated prosthetic hand. J NeuroEng Rehabil. 2019;16(1):1–10. https://doi.org/10.1186/s12984-019-0511-2 .
doi: 10.1186/s12984-019-0511-2
George JA, Kluger DT, Davis TS, Wendelken SM, Okorokova EV, He Q, Duncan CC, Hutchinson DT, Thumser ZC, Beckler DT, Marasco PD, Bensmaia SJ, Clark GA. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Sci Robot. 2019;4(32):2352. https://doi.org/10.1126/scirobotics.aax2352 .
doi: 10.1126/scirobotics.aax2352
Schiefer M, Tan D, Sidek SM, Tyler DJ. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. J Neural Eng. 2015;13(1):016001. https://doi.org/10.1088/1741-2560/13/1/016001 .
doi: 10.1088/1741-2560/13/1/016001
pubmed: 26643802
pmcid: 5517302
Ribot-Ciscar E, Roll J-P. Ago-antagonist muscle spindle inputs contribute together to joint movement coding in man. Brain Res. 1998;791(1):167–76. https://doi.org/10.1016/S0006-8993(98)00092-4 .
doi: 10.1016/S0006-8993(98)00092-4
pubmed: 9593876
Hogan N. Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans Automatic Control. 1984;29(8):681–90. https://doi.org/10.1109/TAC.1984.1103644 .
doi: 10.1109/TAC.1984.1103644
Edwards WT. Effect of joint stiffness on standing stability. Gait Posture. 2007;25(3):432–9. https://doi.org/10.1016/j.gaitpost.2006.05.009 .
doi: 10.1016/j.gaitpost.2006.05.009
Herr HM, Riso RR, Song KW, Casler RJ, Carty MJ. Peripheral neural interface via nerve regeneration to distal tissues. 2016.
Herr HM, Riso RR, Song KW, Casler RJ, Carty MJ, Duval JF. Method and system for providing proprioceptive feedback and functionality mitigating limb pathology. 2017.
Clites TR, Carty MJ, Srinivasan S, Zorzos AN, Herr HM. A murine model of a novel surgical architecture for proprioceptive muscle feedback and its potential application to control of advanced limb prostheses. J Neural Eng. 2017;14(3):036002. https://doi.org/10.1088/1741-2552/aa614b .
doi: 10.1088/1741-2552/aa614b
pubmed: 28211795
Srinivasan SS, Carty MJ, Calvaresi PW, Clites TR, Maimon BE, Taylor CR, Zorzos AN, Herr H. On prosthetic control: a regenerative agonist-antagonist myoneural interface. Sci Robot. 2017;2(6):2971. https://doi.org/10.1126/scirobotics.aan2971 .
doi: 10.1126/scirobotics.aan2971
Clites TR, Carty MJ, Ullauri JB, Carney ME, Mooney LM, Duval JF, Srinivasan SS, Herr M, Hugh M. Proprioception from a neurally controlled lower-extremity prosthesis. Sci Transl Med. 2018;10(443):8373. https://doi.org/10.1126/scitranslmed.aap8373 .
doi: 10.1126/scitranslmed.aap8373
Clites TR, Herr HM, Srinivasan SS, Zorzos AN, Carty MJ. The ewing amputation: the first human implementation of the agonist-antagonist myoneural interface. Plastic Reconstruct Surgery Global Open. 2018;6:11. https://doi.org/10.1097/GOX.0000000000001997 .
doi: 10.1097/GOX.0000000000001997
Srinivasan SS, Diaz M, Carty M, Herr HM. Towards functional restoration for persons with limb amputation: a dual-stage implementation of regenerative agonist-antagonist myoneural interfaces. Sci Rep. 2019;9(1981):1–10. https://doi.org/10.1038/s41598-018-38096-z .
doi: 10.1038/s41598-018-38096-z
Clites T, Carty M, Srinivasan S, Talbot S, Brånemark R, Herr H. Caprine models of the agonist-antagonist myoneural interface implemented at the above- and below-knee amputation levels. Plastic Reconstruct Surgery. 2019;144:2. https://doi.org/10.1097/PRS.0000000000005864 .
doi: 10.1097/PRS.0000000000005864
Herr H, Clites T, Srinivasan S, Talbot S, Dumanian G, Cederna P, Carty M. Reinventing extremity amputation in the era of functional limb restoration. Ann Surg. 2020. https://doi.org/10.1097/SLA.0000000000003895 .
doi: 10.1097/SLA.0000000000003895
Fitts PM. The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol. 1954;47(6):381–91. https://doi.org/10.1037/h0055392 .
doi: 10.1037/h0055392
pubmed: 13174710
Abend W, Bizzi E, Morasso P. Human arm trajectory formation. Brain. 1982;105(2):331–48. https://doi.org/10.1126/scitranslmed.3008933 5.
doi: 10.1093/brain/105.2.331
pubmed: 7082993
Flash T, Hogan N. The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci. 1985;5(7):1688–703. https://doi.org/10.1523/JNEUROSCI.05-07-01688.1985 .
doi: 10.1523/JNEUROSCI.05-07-01688.1985
pubmed: 4020415
pmcid: 6565116
Georgopoulos AP, Kalaska JF, Massey JT. Spatial trajectories and reaction times of aimed movements: effects of practice, uncertainty, and change in target location. J Neurophysiol. 1981;46(4):725–43.
doi: 10.1152/jn.1981.46.4.725
pubmed: 7288461
Mechsner F, Kerzel D, Knoblich G, Prinz W. Perceptual basis of bimanual coordination. Nature. 2001;414:69–73.
doi: 10.1038/35102060
Kelso JA. Phase transitions and critical behavior in human bimanual coordination. Am J Physiol. 1984;246:6.
Lee TD, Blandin Y, Proteau L. Effects of task instructions and oscillation frequency on bimanual coordination. Psychol Res. 1996;59(2):100–6. https://doi.org/10.1007/BF01792431 .
doi: 10.1007/BF01792431
pubmed: 8810585
Scholz JP, Kelso JA. Intentional switching between patterns of bimanual coordination depends on the intrinsic dynamics of the patterns. J Motor Behav. 1990;22(1):98–124. https://doi.org/10.1080/00222895.1990.10735504 .
doi: 10.1080/00222895.1990.10735504
Baldissera F, Cavallari P, Civaschi P. Preferential coupling between voluntary movements of ipsilateral limbs. Neurosci Lett. 1982;34(1):95–100. https://doi.org/10.1016/0304-3940(82)90098-2 .
doi: 10.1016/0304-3940(82)90098-2
pubmed: 7162702
Carson RG, Goodman D, Kelso JAS, Elliott D. Phase transitions and critical fluctuations in rhythmic coordination of ipsilateral hand and foot. J Motor Behav. 1995;27(3):211–24. https://doi.org/10.1080/00222895.1995.9941711 .
doi: 10.1080/00222895.1995.9941711
Markowitz J, Herr H. Human leg model predicts muscle forces, states, and energetics during walking. PLOS Comput Biol. 2016;12(5):1004912. https://doi.org/10.1371/journal.pcbi.1004912 .
doi: 10.1371/journal.pcbi.1004912
Grabke EP, Andrysek J. Applications of musculoskeletal modelling and simulation for lower-limb prosthesis design optimization. In: International design engineering technical conferences and computers and information in engineering conference, vol. Volume 2B: 44th Design Automation Conference. Quebec City (2018). https://doi.org/10.1115/DETC2018-85957
Eilenberg MF, Geyer H, Herr H. Control of a powered ankle-foot prosthesis based on a neuromuscular model. IEEE Trans Neural Syst Rehabil Eng. 2010;18(2):164–73. https://doi.org/10.1109/TNSRE.2009.2039620 .
doi: 10.1109/TNSRE.2009.2039620
pubmed: 20071268
Eilenberg MF, Kuan J-Y, Herr H. Development and evaluation of a powered artificial gastrocnemius for transtibial amputee gait. J Robot. 2018;2018:1. https://doi.org/10.1155/2018/5951965 .
doi: 10.1155/2018/5951965
Durandau G, Farina D, Sartori M. Robust real-time musculoskeletal modeling driven by electromyograms. IEEE Trans Biomed Eng. 2017;65(3):556–64. https://doi.org/10.1109/TBME.2017.2704085 .
doi: 10.1109/TBME.2017.2704085
pubmed: 28504931
Thatte N, Geyer H. Toward balance recovery with leg prostheses using neuromuscular model control. IEEE Trans Biomed Eng. 2015;63(5):904–13. https://doi.org/10.1109/TBME.2015.2472533 .
doi: 10.1109/TBME.2015.2472533
pubmed: 26315935
pmcid: 4854805
Sartori M, Durandau G, Došen S, Farina D. Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling. J Neural Eng. 2018;15(6):066026. https://doi.org/10.1088/1741-2552/aae26b .
doi: 10.1088/1741-2552/aae26b
pubmed: 30229745
Sartori M, van de Riet J, Farina D. Estimation of phantom arm mechanics about four degrees of freedom after targeted muscle reinnervation. IEEE Trans Med Robot Bionics. 2019;1(1):58–64. https://doi.org/10.1109/TMRB.2019.2895791 .
doi: 10.1109/TMRB.2019.2895791
Fleming, A., Huang, S., Huang, H.: Coordination of voluntary residual muscle contractions in transtibial amputees: a pilot study. In: 40th annual international conference of the ieee engineering in medicine and biology society (EMBC). IEEE, Honolulu (2018). https://doi.org/10.1109/EMBC.2018.8512674
Au, S.K., Bonato, P., Herr, H.: An emg-position controlled system for an active ankle-foot prosthesis: an initial experimental study. In: 9th International conference on rehabilitation robotics (ICORR). IEEE, Chicago (2005). https://doi.org/10.1109/ICORR.2005.1501123
Buchanan TS, Lloyd DG, Manal K, Besier TF. Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. J Appl Biomech. 2004;20(4):367–95.
doi: 10.1123/jab.20.4.367
Thelen DG. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J Biomech Eng. 2003;125(1):70–7. https://doi.org/10.1115/1.1531112 .
doi: 10.1115/1.1531112
pubmed: 12661198
Box GEP. Science and statistics. JASA. 1976;71(356):791–9.
doi: 10.1080/01621459.1976.10480949
Klein P, Mattys S, Rooze M. Moment arm length variations of selected muscles acting on talocrural and subtalar joints during movement: an In vitro study. J Biomech. 1996;29(1):21–30. https://doi.org/10.1016/0021-9290(95)00025-9 .
doi: 10.1016/0021-9290(95)00025-9
pubmed: 8839014
Park S-W, Marino H, Charles SK, Sternad D, Hogan N. Moving slowly is hard for humans: limitations of dynamic primitives. J Neurophysiol. 2017;118(1):69–83. https://doi.org/10.1152/jn.00643.2016 PMID: 28356477.
doi: 10.1152/jn.00643.2016
pubmed: 28356477
pmcid: 5494357
Delp S, Anderson F, Arnold A, Loan P, Habib A, John C, Guendelman E, Thelen D. Opensim: open-source software to create and analyze dynamic simulations of movement. Biomedical Eng. 2007;54:1940–50. https://doi.org/10.1109/TBME.2007.901024 .
doi: 10.1109/TBME.2007.901024
Seth A, Hicks JL, Uchida TK, Habib A, Dembia CL, Dunne JJ, Ong CF, DeMers MS, Rajagopal A, Millard M, Hamner SR, Arnold EM, Yong JR, Lakshmikanth SK, Sherman MA, Ku JP, Delp SL. Opensim: simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLOS Comput Biol. 2018;14(7):1–20. https://doi.org/10.1371/journal.pcbi.1006223 .
doi: 10.1371/journal.pcbi.1006223
Plamondon R. Looking at handwriting generation from a velocity control perspective. Acta Psychol. 1993;82(1):89–101. https://doi.org/10.1016/0001-6918(93)90006-D .
doi: 10.1016/0001-6918(93)90006-D
Plamondon R. A kinematic theory of rapid human movements: Part i. movement representation and generation. Biological Cybernetics. 1995;72(4):295–307. arXiv:29178940 5.
doi: 10.1007/BF00202785
pubmed: 7748959
Michmizos KP, Vaisman L, Krebs HI. A comparative analysis of speed profile models for ankle pointing movements: evidence that lower and upper extremity discrete movements are controlled by a single invariant strategy. Front Hum Neurosci. 2014;8:12. https://doi.org/10.3389/fnhum.2014.00962 .
doi: 10.3389/fnhum.2014.00962
Penfield W, Rasmussen TR. The cerebral cortex of man: a clinical study of localization of function. Am Med Assoc. 1950;25:12. https://doi.org/10.1001/jama.1950.02920160086033 .
doi: 10.1001/jama.1950.02920160086033
Matthis JS, Barton SL, Fajen BR. The critical phase for visual control of human walking over complex terrain. Proc Natl Acad Sci. 2017;114(32):6720–9. https://doi.org/10.1073/pnas.1611699114 .
doi: 10.1073/pnas.1611699114
Brockett CL, Chapman GJ. Biomechanics of the ankle. Orthopaed Trauma. 2016;30(3):232. https://doi.org/10.1016/j.mporth.2016.04.015 .
doi: 10.1016/j.mporth.2016.04.015
O’Connor SM, Kuo AD. Direction-dependent control of balance during walking and standing. J Neurophysiol. 2009;102(3):1411–9. https://doi.org/10.1152/jn.00131.2009 PMID: 19553493.
doi: 10.1152/jn.00131.2009
pubmed: 19553493
pmcid: 2746770
Bauby CE, Kuo AD. Active control of lateral balance in human walking. J Biomech. 2000;33(11):1433–40. https://doi.org/10.1016/s0021-9290(00)00101-9 .
doi: 10.1016/s0021-9290(00)00101-9
pubmed: 10940402
Schmidt RA, Lee T. Motor control and learning. 5th ed. Champaign: Human Kinetics; 1988.
Stahel PF, Oberholzer A, Morgan SJ, Heyde CE. Concepts of transtibial amputation: burgess technique versus modified Brückner procedure. ANZ J Surg. 2006;76(10):942–6.
doi: 10.1111/j.1445-2197.2006.03902.x
Kaveny, K.J., Simon, A.M., Lenzi, T., Finucane, S.B., Seyforth, E.A., Finco, G., Culler, K.L., Hargrove, L.J.: Initial results of a variable speed knee controller for walking with a powered knee and ankle prosthesis. In: Misra, S. (ed.) 7th IEEE international conference on biomedical robotics and biomechatronics (BIOROB), pp. 764–769. IEEE Computer Society, Holland (2018).
Au SK, Herr HM. Powered ankle-foot prosthesis. IEEE Robot Automat Magaz. 2008;15(3):52–9. https://doi.org/10.1109/MRA.2008.927697 .
doi: 10.1109/MRA.2008.927697