Post-traumatic olfactory loss and brain response beyond olfactory cortex.
Adult
Aged
Anosmia
/ diagnostic imaging
Brain
/ metabolism
Brain Injuries, Traumatic
/ physiopathology
Female
Gray Matter
/ physiopathology
Humans
Magnetic Resonance Imaging
/ methods
Male
Middle Aged
Odorants
Olfaction Disorders
/ physiopathology
Olfactory Cortex
/ metabolism
Olfactory Perception
/ physiology
Prefrontal Cortex
/ physiopathology
Smell
/ physiology
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
17 02 2021
17 02 2021
Historique:
received:
05
06
2020
accepted:
29
01
2021
entrez:
18
2
2021
pubmed:
19
2
2021
medline:
22
12
2021
Statut:
epublish
Résumé
Olfactory impairment after a traumatic impact to the head is associated with changes in olfactory cortex, including decreased gray matter density and decreased BOLD response to odors. Much less is known about the role of other cortical areas in olfactory impairment. We used fMRI in a sample of 63 participants, consisting of 25 with post-traumatic functional anosmia, 16 with post-traumatic hyposmia, and 22 healthy controls with normosmia to investigate whole brain response to odors. Similar neural responses were observed across the groups to odor versus odorless stimuli in the primary olfactory areas in piriform cortex, whereas response in the frontal operculum and anterior insula (fO/aI) increased with olfactory function (normosmia > hyposmia > functional anosmia). Unexpectedly, a negative association was observed between response and olfactory perceptual function in the mediodorsal thalamus (mdT), ventromedial prefrontal cortex (vmPFC) and posterior cingulate cortex (pCC). Finally, connectivity within a network consisting of vmPFC, fO, and pCC could be used to successfully classify participants as having functional anosmia or normosmia. We conclude that, at the neural level, olfactory impairment due to head trauma is best characterized by heightened responses and differential connectivity in higher-order areas beyond olfactory cortex.
Identifiants
pubmed: 33597627
doi: 10.1038/s41598-021-83621-2
pii: 10.1038/s41598-021-83621-2
pmc: PMC7889874
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4043Subventions
Organisme : NINDS NIH HHS
ID : T32 NS041228
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001863
Pays : United States
Références
Hummel, T. et al. Position paper on olfactory dysfunction. Rhinol. J. 10, 1–30 (2017).
Schofield, P. W., Moore, T. M. & Gardner, A. Traumatic brain injury and olfaction: A systematic review. Front. Neurol. 5, 20 (2014).
doi: 10.3389/fneur.2014.00005
Ciofalo, A. et al. Mild traumatic brain injury: Evaluation of olfactory dysfunction and clinical–neurological characteristics. Brain Inj. 32, 550–556 (2018).
pubmed: 29446651
doi: 10.1080/02699052.2018.1432074
Kruijk, J. R. D. et al. Olfactory function after mild traumatic brain injury. Brain Inj. 17, 73–78 (2003).
pubmed: 12519649
doi: 10.1080/0269905021000010221
Hummel, T., Urbig, A., Huart, C., Duprez, T. & Rombaux, P. Volume of olfactory bulb and depth of olfactory sulcus in 378 consecutive patients with olfactory loss. J. Neurol. 262, 1046–1051 (2015).
pubmed: 25712545
doi: 10.1007/s00415-015-7691-x
Reden, J. et al. Recovery of olfactory function following closed head injury or infections of the upper respiratory tract. Arch. Otolaryngol. Neck Surg. 132, 265–269 (2006).
doi: 10.1001/archotol.132.3.265
Giguère, F. L., Frasnelli, A., Guise, É. D. & Frasnelli, J. Olfactory, cognitive and affective dysfunction assessed 24 hours and one year after a mild Traumatic Brain Injury (mTBI). Brain Inj. 33, 1184–1193 (2019).
doi: 10.1080/02699052.2019.1631486
Hummel, T., Sekinger, B., Wolf, S. R., Pauli, E. & Kobal, G. ‘Sniffin’ sticks’: Olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem. Senses 22, 39–52 (1997).
pubmed: 9056084
doi: 10.1093/chemse/22.1.39
Finn, E. S. et al. Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).
pubmed: 26457551
pmcid: 5008686
doi: 10.1038/nn.4135
Rosenberg, M. D. et al. Methylphenidate modulates functional network connectivity to enhance attention. J. Neurosci. 36, 9547–9557 (2016).
pubmed: 27629707
pmcid: 5039242
doi: 10.1523/JNEUROSCI.1746-16.2016
Hsu, W.-T., Rosenberg, M. D., Scheinost, D., Constable, R. T. & Chun, M. M. Resting-state functional connectivity predicts neuroticism and extraversion in novel individuals. Soc. Cogn. Affect. Neurosci. 13, 224–232 (2018).
pubmed: 29373729
pmcid: 5827338
doi: 10.1093/scan/nsy002
Farruggia, M. C. et al. Identification of a brain fingerprint for overweight and obesity. Physiol. Behav. 222, 112940 (2020).
pubmed: 32417645
doi: 10.1016/j.physbeh.2020.112940
pmcid: 7321926
Yip, S. W., Scheinost, D., Potenza, M. N. & Carroll, K. M. Connectome-based prediction of cocaine abstinence. Am. J. Psychiatry 176, 156–164 (2019).
pubmed: 30606049
pmcid: 6481181
doi: 10.1176/appi.ajp.2018.17101147
Fjaeldstad, A. et al. Brain fingerprints of olfaction: A novel structural method for assessing olfactory cortical networks in health and disease. Sci. Rep. 7, 42534 (2017).
pubmed: 28195241
pmcid: 5307346
doi: 10.1038/srep42534
Frasnelli, J., Fark, T., Lehmann, J., Gerber, J. & Hummel, T. Brain structure is changed in congenital anosmia. NeuroImage 83, 1074–1080 (2013).
pubmed: 23927902
doi: 10.1016/j.neuroimage.2013.07.070
Bitter, T. et al. Anosmia leads to a loss of gray matter in cortical brain areas. Chem. Senses 35, 407–415 (2010).
pubmed: 20231262
doi: 10.1093/chemse/bjq028
Han, P. et al. Alterations of brain gray matter density and olfactory bulb volume in patients with olfactory loss after traumatic brain injury. J. Neurotrauma 35, 2632–2640 (2018).
pubmed: 29699465
doi: 10.1089/neu.2017.5393
Sobel, N. et al. Odorant-induced and sniff-induced activation in the cerebellum of the human. J. Neurosci. 18, 8990–9001 (1998).
pubmed: 9787004
pmcid: 6793565
doi: 10.1523/JNEUROSCI.18-21-08990.1998
Rombaux, P. et al. Retronasal and orthonasal olfactory function in relation to olfactory bulb volume in patients with posttraumatic loss of smell. Laryngoscope 116, 901–905 (2006).
pubmed: 16735894
doi: 10.1097/01.mlg.0000217533.60311.e7
Rombaux, P. et al. Olfactory function and olfactory bulb volume in patients with postinfectious olfactory loss. Laryngoscope 116, 436–439 (2006).
pubmed: 16540905
doi: 10.1097/01.MLG.0000195291.36641.1E
Hummel, T. et al. Depth of olfactory sulcus and olfactory function. Brain Res. 975, 85–89 (2003).
pubmed: 12763595
doi: 10.1016/S0006-8993(03)02589-7
Han, P., Zang, Y., Akshita, J. & Hummel, T. Magnetic resonance imaging of human olfactory dysfunction. Brain Topogr. 20, 20 (2019).
Reichert, J. L. & Schöpf, V. Olfactory loss and regain: Lessons for neuroplasticity. Neuroscientist 24, 22–35 (2018).
pubmed: 28459173
doi: 10.1177/1073858417703910
Schriever, V. A. et al. Time frequency analysis of olfactory induced EEG-power change. PLoS One 12, e0185596 (2017).
pubmed: 29016623
pmcid: 5634540
doi: 10.1371/journal.pone.0185596
Hummel, T. & Welge-Luesen, A. Assessment of olfactory function. Adv. Otorhinolaryngol. 63, 84–98 (2006).
pubmed: 16733334
Huart, C., Legrain, V., Hummel, T., Rombaux, P. & Mouraux, A. Time-frequency analysis of chemosensory event-related potentials to characterize the cortical representation of odors in humans. PLoS One 7, e33221 (2012).
pubmed: 22427997
pmcid: 3302858
doi: 10.1371/journal.pone.0033221
Hummel, T. & Kobal, G. Olfactory event-related potentials. In Methods and Frontiers in Chemosensory Research 429–464 (CRC Press, Boca Raton, 2001).
Loetsch, J. & Hummel, T. The clinical significance of electrophysiological measures of olfactory function. Behav. Brain Res. 170, 78–83 (2006).
doi: 10.1016/j.bbr.2006.02.013
Iravani, B., Arshamian, A., Ohla, K., Wilson, D. A. & Lundström, J. N. Non-invasive recording from the human olfactory bulb. Nat. Commun. 11, 1–10 (2020).
doi: 10.1038/s41467-020-14520-9
Lee, V. K., Nardone, R., Wasco, F., Panigrahy, A. & Zuccoli, G. Delayed activation of the primary orbitofrontal cortex in post-traumatic anosmia. Brain Inj. 30, 1737–1741 (2016).
pubmed: 27564536
doi: 10.1080/02699052.2016.1199895
Levy, L. M., Henkin, R. I., Lin, C. S. & Finley, A. Rapid imaging of olfaction by functional MRI (fMRI): Identification of presence and type of hyposmia. J. Comput. Assist. Tomogr. 23, 767 (1999).
pubmed: 10524865
doi: 10.1097/00004728-199909000-00026
Levy, L. M., Henkin, R. I., Lin, C. S., Hutter, A. & Schellinger, D. Odor memory induces brain activation as measured by functional MRI. J. Comput. Assist. Tomogr. 23, 487 (1999).
pubmed: 10433273
doi: 10.1097/00004728-199907000-00001
Henkin, R. I. & Levy, L. M. Functional MRI of congenital hyposmia: Brain activation to odors and imagination of odors and tastes. J. Comput. Assist. Tomogr. 26, 39 (2002).
pubmed: 11801904
doi: 10.1097/00004728-200201000-00008
Iannilli, E. et al. Differences in anosmic and normosmic group in bimodal odorant perception: A functional-MRI study. Rhinology 49, 458–463 (2011).
pubmed: 21991572
doi: 10.4193/Rhino11.110
Iannilli, E., Gerber, J., Frasnelli, J. & Hummel, T. Intranasal trigeminal function in subjects with and without an intact sense of smell. Brain Res. 1139, 235–244 (2007).
pubmed: 17274965
doi: 10.1016/j.brainres.2006.12.082
Levy, L. M., Henkin, R. I., Hutter, A., Lin, C. S. & Schellinger, D. Mapping brain activation to odorants in patients with smell loss by functional MRI. J. Comput. Assist. Tomogr. 22, 96 (1998).
pubmed: 9448771
doi: 10.1097/00004728-199801000-00019
Kollndorfer, K. et al. Olfactory training induces changes in regional functional connectivity in patients with long-term smell loss. NeuroImage Clin. 9, 401–410 (2015).
pubmed: 26594622
pmcid: 4590718
doi: 10.1016/j.nicl.2015.09.004
Han, P. et al. Impaired brain response to odors in patients with varied severity of olfactory loss after traumatic brain injury. J. Neurol. 265, 2322–2332 (2018).
pubmed: 30109478
doi: 10.1007/s00415-018-9003-8
Moon, W.-J., Park, M., Hwang, M. & Kim, J. K. Functional MRI as an objective measure of olfaction deficit in patients with traumatic anosmia. Am. J. Neuroradiol. 39, 2320–2325 (2018).
pubmed: 30409849
doi: 10.3174/ajnr.A5873
pmcid: 7655384
Reichert, J. L. et al. Severity of olfactory deficits is reflected in functional brain networks—an fMRI study. Hum. Brain Mapp. 39, 3166–3177 (2018).
pubmed: 29602198
pmcid: 6866458
doi: 10.1002/hbm.24067
Pellegrino, R. et al. Olfactory function in patients with hyposmia compared to healthy subjects—an fMRI study. Rhinology 54, 374–381 (2016).
pubmed: 27421303
doi: 10.4193/Rhino16.098
Doty, R. L. et al. Smell identification ability: Changes with age. Science 226, 1441–1443 (1984).
pubmed: 6505700
doi: 10.1126/science.6505700
Carmichael, S. T., Clugnet, M. C. & Price, J. L. Central olfactory connections in the macaque monkey. J. Comp. Neurol. 346, 403–434 (1994).
pubmed: 7527806
doi: 10.1002/cne.903460306
Saleem, K. S., Kondo, H. & Price, J. L. Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey. J. Comp. Neurol. 506, 659–693 (2008).
pubmed: 18067141
doi: 10.1002/cne.21577
Seubert, J., Freiherr, J., Djordjevic, J. & Lundström, J. N. Statistical localization of human olfactory cortex. NeuroImage 66, 333–342 (2013).
pubmed: 23103688
doi: 10.1016/j.neuroimage.2012.10.030
Zhou, G., Lane, G., Cooper, S. L., Kahnt, T. & Zelano, C. Characterizing functional pathways of the human olfactory system. eLife 8, e47177 (2019).
pubmed: 31339489
pmcid: 6656430
doi: 10.7554/eLife.47177
Veldhuizen, M. G. & Small, D. M. Modality-specific neural effects of selective attention to taste and odor. Chem. Sens. 36, 747–760 (2011).
doi: 10.1093/chemse/bjr043
Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brains default network: Anatomy, function, and relevance to disease. In The Year in Cognitive Neuroscience 2008 (ed. Sath, D.) 1–38 (Blackwell Publishing, New York, 2008).
Weissman, D. H., Roberts, K. C., Visscher, K. M. & Woldorff, M. G. The neural bases of momentary lapses in attention. Nat. Neurosci. 9, 971–978 (2006).
pubmed: 16767087
doi: 10.1038/nn1727
Mason, M. F. et al. Wandering minds: The default network and stimulus-independent thought. Science 315, 393–395 (2007).
pubmed: 17234951
pmcid: 1821121
doi: 10.1126/science.1131295
Buckner, R. L. & DiNicola, L. M. The brain’s default network: Updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 (2019).
pubmed: 31492945
doi: 10.1038/s41583-019-0212-7
Zhou, H.-X. et al. Rumination and the default mode network: Meta-analysis of brain imaging studies and implications for depression. NeuroImage 116287, 20. https://doi.org/10.1016/j.neuroimage.2019.116287 (2019).
doi: 10.1016/j.neuroimage.2019.116287
Doty, R. L., Genow, A. & Hummel, T. Scratch density differentiates microsmic from normosmic and anosmic subjects on the University of Pennsylvania Smell Identification Test. Percept. Mot. Skills 86, 211–216 (1998).
pubmed: 9530735
doi: 10.2466/pms.1998.86.1.211
Courtiol, E. & Wilson, D. A. Neural representation of odor-guided behavior in the rat olfactory thalamus. J. Neurosci. 36, 5946–5960 (2016).
pubmed: 27251617
pmcid: 6601814
doi: 10.1523/JNEUROSCI.0533-16.2016
Plailly, J., Howard, J. D., Gitelman, D. R. & Gottfried, J. A. Attention to odor modulates thalamocortical connectivity in the human brain. J. Neurosci. 28, 5257–5267 (2008).
pubmed: 18480282
pmcid: 2706104
doi: 10.1523/JNEUROSCI.5607-07.2008
Tham, W. W. P., Stevenson, R. J. & Miller, L. A. The functional role of the medio dorsal thalamic nucleus in olfaction. Brain Res. Rev. 62, 109–126 (2009).
pubmed: 19800366
doi: 10.1016/j.brainresrev.2009.09.007
Lorig, T. S. Beyond self-report: Brain imaging at the threshold of odor perception. Chemosens. Percept. 5, 46–54 (2012).
doi: 10.1007/s12078-012-9116-x
Sobel, N. et al. Blind smell: Brain activation induced by an undetected air-borne chemical. Brain 122(Pt 2), 209–217 (1999).
pubmed: 10071050
doi: 10.1093/brain/122.2.209
Zucco, G. M., Priftis, K. & Stevenson, R. J. From blindsight to blindsmell: A mini review. Transl. Neurosci. 6, 20 (2014).
Arzi, A., Rozenkrantz, L., Holtzman, Y., Secundo, L. & Sobel, N. Sniffing patterns uncover implicit memory for undetected odors. Curr. Biol. 24, R263–R264 (2014).
pubmed: 24698370
doi: 10.1016/j.cub.2014.02.004
Peter, M. G. et al. Normal olfactory functional connectivity despite lifelong absence of olfactory experiences. Cortex Cereb. https://doi.org/10.1093/cercor/bhaa217 (2021).
doi: 10.1093/cercor/bhaa217
Lötsch, J. et al. A brain-lesion pattern based algorithm for the diagnosis of posttraumatic olfactory loss. Rhinology 53, 365–370 (2015).
pubmed: 26735133
doi: 10.4193/Rhino15.010
Stöcker, T. & Shah, N. J. MP-SAGE: A new MP-RAGE sequence with enhanced SNR and CNR for brain imaging utilizing square-spiral phase encoding and variable flip angles. Magn. Reson. Med. 56, 824–834 (2006).
pubmed: 16947341
doi: 10.1002/mrm.21011
Ashburner, J. & Friston, K. J. Unified segmentation. NeuroImage 26, 839–851 (2005).
pubmed: 15955494
doi: 10.1016/j.neuroimage.2005.02.018
Macey, P. M., Macey, K. E., Kumar, R. & Harper, R. M. A method for removal of global effects from fMRI time series. NeuroImage 22, 360–366 (2004).
pubmed: 15110027
doi: 10.1016/j.neuroimage.2003.12.042
Henson, R. N., Price, C. J., Rugg, M. D., Turner, R. & Friston, K. J. Detecting latency differences in event-related BOLD responses: Application to words versus nonwords and initial versus repeated face presentations. NeuroImage 15, 83–97 (2002).
pubmed: 11771976
doi: 10.1006/nimg.2001.0940
Lakens, D. Equivalence tests: A practical primer for t tests, correlations, and meta-analyses. Soc. Psychol. Personal. Sci. 8, 355–362 (2017).
pubmed: 28736600
pmcid: 5502906
doi: 10.1177/1948550617697177
Lakens, D., Scheel, A. M. & Isager, P. M. Equivalence testing for psychological research: A tutorial. Adv. Methods Pract. Psychol. Sci. 1, 259–269 (2018).
doi: 10.1177/2515245918770963
Joshi, A. et al. Unified framework for development, deployment and robust testing of neuroimaging algorithms. Neuroinformatics 9, 69–84 (2011).
pubmed: 21249532
pmcid: 3066099
doi: 10.1007/s12021-010-9092-8
Satterthwaite, T. D. et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NeuroImage 64, 20 (2013).
doi: 10.1016/j.neuroimage.2012.08.052
Shen, X., Tokoglu, F., Papademetris, X. & Constable, R. T. Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. NeuroImage 82, 403–415 (2013).
pubmed: 23747961
doi: 10.1016/j.neuroimage.2013.05.081