Choosing the best algorithm among five thyroid nodule ultrasound scores: from performance to cytology sparing-a single-center retrospective study in a large cohort.
Biopsy, fine-needle
Cytology sparing
Thyroid imaging, reporting, and data system
Thyroid nodules
Ultrasonography
Journal
European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774
Informations de publication
Date de publication:
Aug 2021
Aug 2021
Historique:
received:
29
09
2020
accepted:
19
01
2021
revised:
06
12
2020
pubmed:
19
2
2021
medline:
14
7
2021
entrez:
18
2
2021
Statut:
ppublish
Résumé
Incidental diagnosis of thyroid nodules, and therefore of thyroid cancer, has definitely increased in recent years, but the mortality rate for thyroid malignancies remains very low. Within this landscape of overdiagnosis, several nodule ultrasound scores (NUS) have been proposed to reduce unnecessary diagnostic procedures. Our aim was to verify the suitability of five main NUS. This single-center, retrospective, observational study analyzed a total number of 6474 valid cytologies. A full clinical and US description of the thyroid gland and nodules was performed. We retrospectively applied five available NUS: KTIRADS, ATA, AACE/ACE-AME, EUTIRADS, and ACRTIRADS. Thereafter, we calculated the sensitivity, specificity, PPV, and NPV, along with the number of possible fine-needle aspiration (FNA) sparing, according to each NUS algorithm and to clustering risk classes within three macro-groups (low, intermediate, and high risk). In a real-life setting of thyroid nodule management, available NUS scoring systems show good accuracy at ROC analysis (AUC up to 0.647) and higher NPV (up to 96%). The ability in FNA sparing ranges from 10 to 38% and reaches 44.2% of potential FNA economization in the low-risk macro-group. Considering our cohort, ACRTIRADS and AACE/ACE-AME scores provide the best compromise in terms of accuracy and spared cytology. Despite several limitations, available NUS do appear to assist physicians in clinical practice. In the context of a common disease, such as thyroid nodules, higher accuracy and NPV are desirable NUS features. Further improvements in NUS sensitivity and specificity are attainable future goals to optimize nodule management. • Thyroid nodule ultrasound scores do assist clinicians in real practice. • Ultrasound scores reduce unnecessary diagnostic procedures, containing indolent thyroid microcarcinoma overdiagnosis. • The variable malignancy risk of the "indeterminate" category negatively influences score's performance in real-life management of thyroid lesions.
Identifiants
pubmed: 33599836
doi: 10.1007/s00330-021-07703-5
pii: 10.1007/s00330-021-07703-5
pmc: PMC8270877
doi:
Types de publication
Journal Article
Observational Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
5689-5698Informations de copyright
© 2021. The Author(s).
Références
Haugen BR, Alexander EK, Bible KC et al (2016) 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26:1–133. https://doi.org/10.1089/thy.2015.0020
doi: 10.1089/thy.2015.0020
pubmed: 26462967
pmcid: 4739132
Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29. https://doi.org/10.3322/caac.21208
doi: 10.3322/caac.21208
pubmed: 24399786
Dal Maso L, Panato C, Franceschi S et al (2018) The impact of overdiagnosis on thyroid cancer epidemic in Italy, 1998-2012. Eur J Cancer 94:6–15. https://doi.org/10.1016/j.ejca.2018.01.083
doi: 10.1016/j.ejca.2018.01.083
pubmed: 29502036
Hegedüs L (2004) Clinical practice. The thyroid nodule. N Engl J Med 351:1764–1771. https://doi.org/10.1056/NEJMcp031436
doi: 10.1056/NEJMcp031436
pubmed: 15496625
Cancer Stat Facts: Thyroid Cancer. https://seer.cancer.gov/statfacts/html/thyro.html
Powers AE, Marcadis AR, Lee M, Morris LGT, Marti JL (2019) Changes in trends in thyroid cancer incidence in the United States, 1992 to 2016. JAMA 322:2440–2441. https://doi.org/10.1001/jama.2019.18528
Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30. https://doi.org/10.3322/caac.21442
doi: 10.3322/caac.21442
pubmed: 29313949
Tessler FN, Middleton WD, Grant EG et al (2017) ACR thyroid imaging, reporting and data system (TI-RADS): white paper of the ACR TI-RADS committee. J Am Coll Radiol 14:587–595. https://doi.org/10.1016/j.jacr.2017.01.046
doi: 10.1016/j.jacr.2017.01.046
pubmed: 28372962
Gharib H, Papini E, Garber JR et al (2016) American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules--2016 UPDATE. Endocr Pract 22:622–639. https://doi.org/10.4158/EP161208.GL
doi: 10.4158/EP161208.GL
pubmed: 27167915
Shin JH, Baek JH, Chung J et al (2016) Ultrasonography diagnosis and imaging-based management of thyroid nodules: revised Korean Society of Thyroid Radiology consensus statement and recommendations. Korean J Radiol 17:370–395. https://doi.org/10.3348/kjr.2016.17.3.370
doi: 10.3348/kjr.2016.17.3.370
pubmed: 27134526
pmcid: 4842857
Russ G, Bonnema SJ, Erdogan MF, Durante C, Ngu R, Leenhard L (2017) European Thyroid Association guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: the EU-TIRADS. Eur Thyroid J 6:225–237. https://doi.org/10.1159/000478927
Persichetti A, Di Stasio E, Guglielmi R et al (2018) Predictive value of malignancy of thyroid nodule ultrasound classification systems: a prospective study. J Clin Endocrinol Metab 103:1359–1368. https://doi.org/10.1210/jc.2017-01708
doi: 10.1210/jc.2017-01708
pubmed: 29408952
Pandya A, Caoili EM, Jawad-Makki F et al (2020) Retrospective cohort study of 1947 thyroid nodules: a comparison of the 2017 American College of Radiology TI-RADS and the 2015 American Thyroid Association classifications. AJR Am J Roentgenol 214:900–906. https://doi.org/10.2214/AJR.19.21904
doi: 10.2214/AJR.19.21904
pubmed: 32069084
Grani G, Lamartina L, Cantisani V, Maranghi M, Lucia P, Durante C (2018) Interobserver agreement of various thyroid imaging reporting and data systems. Endocr Connect 7:1–7. https://doi.org/10.1530/EC-17-0336
Lauria Pantano A, Maddaloni E, Briganti SI et al (2018) Differences between ATA, AACE/ACE/AME and ACR TI-RADS ultrasound classifications performance in identifying cytological high-risk thyroid nodules. Eur J Endocrinol 178:595–603. https://doi.org/10.1530/EJE-18-0083
doi: 10.1530/EJE-18-0083
pubmed: 29626008
Burman KD, Wartofsky L (2016) Thyroid nodules. N Engl J Med 374:1294–1295. https://doi.org/10.1056/NEJMc1600493
doi: 10.1056/NEJMc1600493
pubmed: 27028927
Rago T, Vitti P, Chiovato L et al (1998) Role of conventional ultrasonography and color flow-doppler sonography in predicting malignancy in “cold” thyroid nodules. Eur J Endocrinol 138:41–46. https://doi.org/10.1530/eje.0.1380041
doi: 10.1530/eje.0.1380041
pubmed: 9461314
British Thyroid Association, Royal College of Physicians (2007) Guidelines for the management of thyroid cancer (Perros P, ed). Report of the Thyroid Cancer Guidelines Update Group, 2nd edn. Royal College of Physicians, London
Pacini F, Basolo F, Bellantone R et al (2018) Italian consensus on diagnosis and treatment of differentiated thyroid cancer: joint statements of six Italian societies. J Endocrinol Invest 41:849–876. https://doi.org/10.1007/s40618-018-0884-2
doi: 10.1007/s40618-018-0884-2
pubmed: 29729004
Sparano C, Parenti G, Cilotti A et al (2019) Clinical impact of the new SIAPEC-IAP classification on the indeterminate category of thyroid nodules. J Endocrinol Invest 42:1–6. https://doi.org/10.1007/s40618-018-0871-7
doi: 10.1007/s40618-018-0871-7
pubmed: 29546655
Edge S, Byrd DR, Compton CC, Fritz AG, Greene F, Trotti A (2010) AJCC Cancer Staging Handbook: From the AJCC Cancer Staging Manual, 7th edn. Springer-Verlag, New York
Amin MB, Edge S, Greene F et al (2017) AJCC Cancer Staging Manual, 8th edn. Springer International Publishing, New York
doi: 10.1007/978-3-319-40618-3
Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174
doi: 10.2307/2529310
Ha EJ, Moon W-J, Na DG et al (2016) A multicenter prospective validation study for the Korean thyroid imaging reporting and data system in patients with thyroid nodules. Korean J Radiol 17:811–821. https://doi.org/10.3348/kjr.2016.17.5.811
doi: 10.3348/kjr.2016.17.5.811
pubmed: 27587972
pmcid: 5007410
Middleton WD, Teefey SA, Reading CC et al (2017) Multiinstitutional analysis of thyroid nodule risk stratification using the American College of Radiology thyroid imaging reporting and data system. AJR Am J Roentgenol 208:1331–1341. https://doi.org/10.2214/AJR.16.17613
doi: 10.2214/AJR.16.17613
pubmed: 28402167
Grani G, Lamartina L, Ascoli V et al (2019) Reducing the number of unnecessary thyroid biopsies while improving diagnostic accuracy: toward the “right” TIRADS. J Clin Endocrinol Metab 104:95–102. https://doi.org/10.1210/jc.2018-01674
doi: 10.1210/jc.2018-01674
pubmed: 30299457
Tee YY, Lowe AJ, Brand CA, Judson RT (2007) Fine-needle aspiration may miss a third of all malignancy in palpable thyroid nodules: a comprehensive literature review. Ann Surg 246:714–720. https://doi.org/10.1097/SLA.0b013e3180f61adc
doi: 10.1097/SLA.0b013e3180f61adc
pubmed: 17968160
Nou E, Kwong N, Alexander LK, Cibas ES, Marqusee E, Alexander EK (2014) Determination of the optimal time interval for repeat evaluation after a benign thyroid nodule aspiration. J Clin Endocrinol Metab 99:510–516. https://doi.org/10.1210/jc.2013-3160
Castellana M, Castellana C, Treglia G et al (2020) Performance of five ultrasound risk stratification systems in selecting thyroid nodules for FNA. J Clin Endocrinol Metab 105. https://doi.org/10.1210/clinem/dgz170