MC3T3 E1 cell response to mineralized nanofiber shish kebab structures.


Journal

Journal of biomedical materials research. Part B, Applied biomaterials
ISSN: 1552-4981
Titre abrégé: J Biomed Mater Res B Appl Biomater
Pays: United States
ID NLM: 101234238

Informations de publication

Date de publication:
10 2021
Historique:
revised: 14 01 2021
received: 23 03 2020
accepted: 01 02 2021
pubmed: 21 2 2021
medline: 11 3 2022
entrez: 20 2 2021
Statut: ppublish

Résumé

Block copolymers (BCPs) are of growing interest because of their extensive utility in tissue engineering, particularly in biomimetic approaches where multifunctionality is critical. We synthesized polycaprolactone-polyacrylic acid (PCL-b-PAA) BCP and crystallized it onto PCL nanofibers, making BCP nanofiber shish kebab (BCP NFSK) structures. When mineralized in 2× simulated body fluid, BCP NFSK mimic the structure of mineralized collagen fibrils. We hypothesized that the addition of a calcium phosphate layer of graded roughness on the nano-structure of the nanofiber shish kebabs would enhance preosteoblast alkaline phosphatase (ALP) activity, which has been shown to be a critical component in bone matrix formation. The objectives in the study were to investigate the effect of mineralization on cell proliferation and ALP activity, and to also investigate the effect of BCP NFSK periodicity, a structural feature describing the distance between PCL-b-PAA crystals on the nanofiber core, on cell proliferation, and ALP activity. ALP activity of cells cultured on the mineralized BCP NFSK template was significantly higher than the nonmineralized BCP NFSK templates. Interestingly, no statistical difference was observed in ALP activity when the periodic varied, indicating that surface chemistry seemed to play a larger role than the surface roughness.

Identifiants

pubmed: 33608965
doi: 10.1002/jbm.b.34818
doi:

Substances chimiques

Acrylic Resins 0
Biocompatible Materials 0
Calcium Phosphates 0
Polyesters 0
polycaprolactone 24980-41-4
carbopol 940 4Q93RCW27E
Collagen 9007-34-5
calcium phosphate 97Z1WI3NDX

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

1601-1610

Informations de copyright

© 2021 Wiley Periodicals LLC.

Références

Hoemann CD, El-Gabalawy H, McKee MD. In vitro osteogenesis assays: influence of the primary cell source on alkaline phosphatase activity and mineralization. Pathol Biol (Paris). 2009;57(4):318-323.
Blair HC, Larrouture QC, Li Y, et al. Osteoblast differentiation and bone matrix formation in vivo and in vitro. Tissue Eng Part B Rev. 2017;23(3):268-280.
Lilge I, Schonherr H. Control of cell attachment and spreading on poly(acrylamide) brushes with varied grafting density. Langmuir. 2016;32(3):838-847.
Chen X, Dong B, Wang B, Shah R, Li CY. Crystalline block copolymer decorated, hierarchically ordered polymer nanofibers. Macromolecules. 2010;43(23):9918-9927.
Wang B, Li B, Xiong J, Li CY. Hierarchically ordered polymer nanofibers via electrospinning and controlled polymer crystallization. Macromolecules. 2008;41(24):9516-9521.
Laird ED, Bose RK, Qi H, Lau KKS, Li CY. Electric field-induced, reversible lotus-to-rose transition in Nanohybrid shish kebab paper with hierarchical roughness. ACS Appl Mater Interfaces. 2013;5(22):12089-12098.
Li CY, Li L, Cai W, Kodjie SL, Tenneti KK. Nanohybrid shish-kebabs: periodically functionalized carbon nanotubes. Adv Mater. 2005;17(9):1198-1202.
Yu T, Gleeson SE, Li CY, Marcolongo M. Electrospun poly(epsilon-caprolactone) nanofiber shish kebabs mimic mineralized bony surface features. J Biomed Mater Res B Appl Biomater. 2019;107(4):1141-1149.
Park KH, Kim S-J, Park Y-J, Song H-J. Calcium phosphate compound formed on electrospun chitosan nanofibers using modified simulated body fluid. Polym Bull. 2019;76(8):4205-4214.
Weisgerber DW, Milner DJ, Lopez-Lake H, et al. A mineralized collagen-polycaprolactone composite promotes healing of a porcine mandibular defect. Tissue Eng Part A. 2018;24(11-12):943-954.
Jee SS, Thula TT, Gower LB. Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: influence of polymer molecular weight. Acta Biomater. 2010;6(9):3676-3686.
Thula TT, Rodriguez DE, Lee MH, Pendi L, Podschun J, Gower LB. In vitro mineralization of dense collagen substrates: a biomimetic approach toward the development of bone-graft materials. Acta Biomater. 2011;7(8):3158-3169.
Chen X, Wang W, Cheng S, Dong B, Li CY. Mimicking bone nanostructure by combining block copolymer self-assembly and 1D crystal nucleation. ACS Nano. 2013;7(9):8251-8257.
Chen X, Gleeson SE, Yu T, et al. Hierarchically ordered polymer nanofiber shish kebabs as a bone scaffold material. J Biomed Mater Res A. 2017;105(6):1786-1798.
Ohtsuki C, Kushitani H, Kokubo T, Kotani S, Yamamuro T. Apatite formation on the surface of Ceravital-type glass-ceramic in the body. J Biomed Mater Res. 1991;25(11):1363-1370.
Kokubo T. Bioactive glass ceramics: properties and applications. Biomaterials. 1991;12(2):155-163.
Mazón P, García-Bernal D, Meseguer-Olmo L, Cragnolini F, Piedad N. Human mesenchymal stem cell viability, proliferation and differentiation potential in response to ceramic chemistry and surface roughness. Ceram Int. 2015;41(5):6631-6644.
Yoon BJV, Xavier F, Walker BR, Grinberg S, Cammisa FP, Abjornson C. Optimizing surface characteristics for cell adhesion and proliferation on titanium plasma spray coatings on polyetheretherketone. Spine J. 2016;16(10):1238-1243.
Niks M, Otto M. Towards an optimized MTT assay. J Immunol Methods. 1990;130(1):149-151.
Frohbergh ME, Katsman A, Botta GP, et al. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials. 2012;33(36):9167-9178.
Chatterjee K, Sun L, Chow LC, Young MF, Simon CG Jr. Combinatorial screening of osteoblast response to 3D calcium phosphate/poly(epsilon-caprolactone) scaffolds using gradients and arrays. Biomaterials. 2011;32(5):1361-1369.
Cai Q, Xu Q, Feng Q, Cao X, Yang X, Deng X. Biomineralization of electrospun poly(l-lactic acid)/gelatin composite fibrous scaffold by using a supersaturated simulated body fluid with continuous CO2 bubbling. Appl Surf Sci. 2011;257(23):10109-10118.
Kim YY, Douglas EP, Gower LB. Patterning inorganic (CaCO3) thin films via a polymer-induced liquid-precursor process. Langmuir. 2007;23(9):4862-4870.
Czekanska EM, Stoddart MJ, Ralphs JR, Richards RG, Hayes JS. A phenotypic comparison of osteoblast cell lines versus human primary osteoblasts for biomaterials testing. J Biomed Mater Res A. 2014;102(8):2636-2643.
Jing X, Mi HY, Wang XC, Peng XF, Turng LS. Shish-kebab-structured poly(epsilon-caprolactone) nanofibers hierarchically decorated with chitosan-poly(epsilon-caprolactone) copolymers for bone tissue engineering. ACS Appl Mater Interfaces. 2015;7(12):6955-6965.
Beck GR Jr. Inorganic phosphate as a signaling molecule in osteoblast differentiation. J Cell Biochem. 2003;90(2):234-243.
Lorenz U. Protein tyrosine phosphatase assays. Curr Protoc Immunol. 2011;93(1):11.7.1-11.7.12. Chapter 11:Unit 11 7.
Whited BM, Whitney JR, Hofmann MC, Xu Y, Rylander MN. Pre-osteoblast infiltration and differentiation in highly porous apatite-coated PLLA electrospun scaffolds. Biomaterials. 2011;32(9):2294-2304.
O'Gorman DM, Tierney CM, Brennan O, O'Brien FJ. The marine-derived, multi-mineral formula, aquamin, enhances mineralisation of osteoblast cells in vitro. Phytother Res. 2012;26(3):375-380.
Bhumiratana S, Grayson WL, Castaneda A, et al. Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Biomaterials. 2011;32(11):2812-2820.
Hu Q, Tan Z, Liu Y, et al. Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells. J Mater Chem. 2007;17(44):4690-4698.
Wang X, Salick MR, Wang X, et al. Poly(epsilon-caprolactone) nanofibers with a self-induced nanohybrid shish-kebab structure mimicking collagen fibrils. Biomacromolecules. 2013;14(10):3557-3569.
Wang YW, Wu Q, Chen GQ. Attachment, proliferation and differentiation of osteoblasts on random biopolyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds. Biomaterials. 2004;25(4):669-675.
Li L, Li CY, Ni C. Polymer crystallization-driven, periodic patterning on carbon nanotubes. J Am Chem Soc. 2006;128(5):1692-1699.
Mavis B, Demirtas TT, Gumusderelioglu M, Gunduz G, Colak U. Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate. Acta Biomater. 2009;5(8):3098-3111.
Hu H, Zhang G, Tian G, Lv G, Jin Y. miRNA-15b-5p promotes expression of osteoblast differentiation-associated markers via targeting SMAD7. Int J Clin Exp Med. 2018;11(4):3578-3586.
Zhang W, Wang G, Liu Y, et al. The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration. Biomaterials. 2013;34(13):3184-3195.
Zhao L, Mei S, Chu PK, Zhang Y, Wu Z. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials. 2010;31(19):5072-5082.
Tan J, Saltzman WM. Biomaterials with hierarchically defined micro- and nanoscale structure. Biomaterials. 2004;25(17):3593-3601.
Waddington RJ, Roberts HC, Sugars RV, Schonherr E. Differential roles for small leucine-rich proteoglycans in bone formation. Eur Cell Mater. 2003;6:12-21. discussion 21.

Auteurs

Tony Yu (T)

Department of Material Science and Engineering, Drexel University, Philadelphia, Pennsylvania, USA.
School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA.

Mark Petrovic (M)

Department of Material Science and Engineering, Drexel University, Philadelphia, Pennsylvania, USA.

Aria Attia (A)

Department of Material Science and Engineering, Drexel University, Philadelphia, Pennsylvania, USA.

Diego Galindo (D)

Department of Material Science and Engineering, Drexel University, Philadelphia, Pennsylvania, USA.

Mark C Staub (MC)

Department of Material Science and Engineering, Drexel University, Philadelphia, Pennsylvania, USA.

Seyong Kim (S)

Department of Material Science and Engineering, Drexel University, Philadelphia, Pennsylvania, USA.
Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea.

Christopher Y Li (CY)

Department of Material Science and Engineering, Drexel University, Philadelphia, Pennsylvania, USA.

Michele Marcolongo (M)

Department of Material Science and Engineering, Drexel University, Philadelphia, Pennsylvania, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH