Photochemistry of Tris(2,4-dibromophenyl)amine and its Application to Co-oxidation on Sulfides and Phosphines.


Journal

Photochemistry and photobiology
ISSN: 1751-1097
Titre abrégé: Photochem Photobiol
Pays: United States
ID NLM: 0376425

Informations de publication

Date de publication:
Nov 2021
Historique:
revised: 09 02 2021
received: 05 01 2021
accepted: 15 02 2021
pubmed: 21 2 2021
medline: 21 2 2021
entrez: 20 2 2021
Statut: ppublish

Résumé

The photochemistry of tris(2,4-dibromophenyl)amine was investigated via time-resolved nanosecond spectroscopy. The tris(2,4-dibromophenyl)amine radical cation ("Magic Green") was immediately detected after the laser pulse; this intermediate then cyclizes to N-aryl-4a,4b-dihydrocarbazole radical cation. The latter transient reacted with molecular oxygen to provide the corresponding hydroperoxyl radical, which smoothly co-oxidize sulfides into sulfoxides. On the other hand, the photogenerated "Magic Green" was exploited to promote the co-oxidation of nucleophilic triarylphosphines to triarylphosphine oxides through an electron transfer process preventing the amine cyclization. In this case, the intermediate Ar

Identifiants

pubmed: 33609291
doi: 10.1111/php.13403
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

1278-1288

Informations de copyright

© 2021 American Society for Photobiology.

Références

Seo, E. T., R. F. Nelson, J. M. Fritsch, L. S. Macoux, D. T. Leedy and R. N. Adams (1966) Anodic oxidation pathways of aromatic amines. Electrochemical and electron paramagnetic resonance studies. J. Am. Chem. Soc. 88, 3498-3503.
Ambrose, J. F., L. L. Carpenter and R. F. Nelson (1975) Electrochemical and spectroscopic properties of cation radicals. III. Reaction pathways of carbazolium radical ions. J. Electrochem. Soc. 122, 876-894.
Papouchado, L., R. N. Adams and S. W. Feldberg (1969) Anodic catalytic currents involving cyanide ion. J. Electroanal. Chem. Interfacial Electrochem. 21, 408-410.
Odon, S. A., S. Ergun, P. P. Poudel and S. R. Parkin (2014) A fast, inexpensive method for predicting overcharge performance in lithium-ion batteries. Energy Environ. Sci. 7, 760-767.
Valenti, G., C. Bruno, S. Rapino, A. Fiorani, E. A. Jackson, L. T. Scott, R. Paolucci and M. Marcaccio (2010) Intense and tunable electrochemiluminescence of corannulene. J. Phys. Chem. C. 114, 19467-19472.
Horn, E. J., B. R. Rosen and P. S. Baran (2016) Synthetic organic electrochemistry: an enabling and innately sustainable method. ACS Cent. Sci. 2, 302-308.
Schotten, C., T. P. Nicholls, R. A. Bourne, N. Kapur, B. N. Nguyen and C. E. Willans (2020) Making electrochemistry easily accessible to the synthetic chemist. Green Chem. 22, 3358-3375.
Fuchigami, T., K. Mitomo and H. Ishii (2001) Electrolytic partial fluorination of organic compounds Part 44. Anodic gem-difluorodesulfuration using triarylamine mediators. J. Electroanal. Chem. 507, 30-33.
Fuchigami, T., M. Tetsu, T. Tajima and H. Ishii (2001) Indirect anodic monofluorodesulfurization of β-phenylsulfenyl β-lactams using a triarylamine mediator. Synlett 8, 1269-1271.
Shen, Y., K. Suzuki, M. Atobe and T. Fuchigami (2003) Indirect anodic fluorodesulfurization of S-aryl thiobenzoates using a triarylamine mediator. J. Electroanal. Chem. 540, 189-194.
Shen, Y., H. Hattori, K. Ding, M. Atobe and T. Fuchigami (2006) Triarylamine mediated desulfurization of S-arylthiobenzoates and a tosylhydrazone derivative. Electrochim. Acta 51, 2819-2824.
Oyama, M., J. Matsui and H. Park (2002) Spectroscopic detection of short-lived anthracene derivative cation radicals using an electron transfer stopped-flow method wit tris-(2,4-dibromophenyl)amine cation-radical. Chem. Commun. 6, 604-605.
Matsui, J., H. Park, K. Otsuka and M. Oyama (2003) Kinetics and mechanisms of the reactions of 9-substituted anthracene cation radicals with water or methanol in acetonitrile. J. Electroanal. Chem. 558, 49-57.
Yano, M., Y. Isida, M. Tatsumi, K. Sato, D. Shiomi, M. Oyama and T. Takui (2004) Organic high-spin systems: synthesis, electrochemical and ETSF studies of a series of tetraaryl-meta-phenylenediamines. J. Phys. Chem. Solids 65, 733-736.
Schmidt, W. and E. Steckham (1980) Elektrochemische und spektroskopische Untersuchung bromsubstituierter Triarylamin-Redoxsysteme. Chem. Ber. 113, 577-585.
Lopez, L., G. M. Farinola, N. Naci and S. Sportelli (1998) Monodeoxygenation of spiro adamantine-1,2-dioxetanes induced by aminium salt. Tetrahedron 54, 6939-6946.
Lopez, L., L. Troisi and G. Melel (1991) Electron-transfer reactions on hindered olefins induced by aminium salts. Tetrahedron Lett. 32, 117-120.
Yueh, W. and N. L. Bauld (1997) Mechanistic aspects of the substrate ionization step in aminium salt catalyzed cyclopropanation. Res. Chem. Intermed. 23, 1-16.
Yueh, W. and N. L. Bauld (1995) Mechanistic criteria for cation radical reactions: aminium salt-catalyzed cyclopropanation. J. Am. Chem. Soc. 117, 5671-5676.
Park, K. H., K. Jun, S. R. Sim and S. W. Oh (1997) Cation radicals with 2-pyridylhydrazones in nitrile solvents s-triazolo[4,3-a]pyridines by thianthrane cation radical perchlorate and 1-(2-pyridyl)-1,2,4-triazoles by tris(2,4-dibromophenyl)aminium hexachloroantimonate. Bull. Korean Chem. Soc. 18, 604-608.
Breslin, D. T. and M. A. Fox (1994) Photochemical electrocyclization of thermally stable triarylamine radical cations. J. Org. Chem. 59, 7557-7561.
Breslin, D. T. and M. A. Fox (1994) Excited-state behavior of thermally stable radical ions. J. Phys. Chem. 98, 408-411.
Bonesi, S. M., S. Protti and A. Albini (2018) Photochemical Co-oxidation of sulfides and phosphines with tris(p-Bromophenyl)amine. A Mechanistic Study. J. Org. Chem. 83, 8104-8113.
Bonesi, S. M., D. Dondi, S. Protti, M. Fagnoni and A. Albini (2014) (Co)oxidation/cyclization processes upon irradiation of triphenylamine. Tetrahedron Lett. 55, 2932-2935.
Bordwell, F. G. and P. Boutan (1957) Synthesis of aryl methyl sulfoxides and determination of the conjugative effect of the methylsulfinyl group. J. Am. Chem. Soc. 79, 717-722.
Senear, A. E., W. Valient and J. Wirth (1960) Derivatives of triphenylphosphine and triphenylphosphine oxide. J. Org. Chem. 25, 2001-2006.
Modena, G., F. Taddei and P. E. Todesco (1960) Nucleophilic substitutions in ethylene derivatives: 1-arylsulfonyl-1-methyl-2-haloethylenes. Gazz. Chim. Ital. 89, 894.
Cerniani, A., G. Modena and P. E. Todesco (1960) Oxidation of organic sulfides. IV. Oxidation of benzyl and phenyl alkyl sulfoxides to sulfones. Gazz. Chim. Ital. 90, 3.
Turro, N. J., V. Ramamurthy and J. C. Scaiano (2010) In Modern Molecular Photochemistry of Organic Molecules. University Science Books, Sausalito, CA.
Davidson, R. S., J. W. Goodin and K. Graham. (1984) The photochemistry of aryl halides and related compounds. In Advances in Physical Organic Chemistry, Vol. 20 (Edited by V. Gold and D. Bethell), pp 191-233.Academic Press, London. https://doi.org/10.1016/S0065-3160(08)60149-5
Freeman, P. K., R. Srinivasa, J.-A. Campbell and M. L. Deinzer (1986) The photochemistry of polyhaloarenes. 5. Fragmentation pathways in polychlorobenzene radical anions. J. Am. Chem. Soc. 108, 5531-5536.
Liang, J. J., C. L. Gu, M. L. Kacher and C. S. Foote (1983) Chemistry of singlet oxygen. 45. Mechanism of the photooxidation of sulfides. J. Am. Chem. Soc. 105, 4717-4721.
Parisien-Collette, S., A. C. Hernández-Pérez and S. K. Collins (2016) Photochemical synthesis of carbazoles using an [Fe(phen)3](NTf2)2/O2 catalyst system: catalysis toward sustainability. Org. Lett. 18, 4994-4997.
Hernández-Pérez, A. C. and S. K. Collins (2013) A visible-light-mediated synthesis of carbazoles. Angew. Chem. Int. Ed. 52, 12696-12700.
Buxton, G. V., C. L. Greenstock, W. P. Helman and A. B. Ross (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O− in Aqueous solution. J. Phys. Chem. Ref. Data 17, 513-885.
Dapperheld, S., E. Steckhan, K.-H.-G. Brinkshaus and T. Esch (1991) Substituted triarylamine cation-radical redox systems. Synthesis, electrochemical and spectroscopic properties, Hammett behavior, and suitability as redox catalysts. Chem. Ber. 124, 2557-2567.
Lee, Y.-M., M. Yoo, H. Yoon, X.-X. Li, W. Nam and S. Fukuzumi (2017) Direct oxygen atom transfer versus electron transfer mechanism in the phosphine oxidation by nonheme Mn (IV)-oxo complexes. Chem. Commun. 53, 9352-9355.
Bonesi, S. M., S. Protti and A. Albini (2016) A reactive oxygen species (ROS) vs peroxyl-mediated photosensitized oxidation of triphenylphosphine: a comparative study. J. Org. Chem. 81, 11678-11685.
Zhang, D., B. Ye, D. G. Ho, R. Gao and M. Selke (2006) Chemistry of singlet oxygen with arylphosphines. Tetrahedron 62, 10729-10733.

Auteurs

Sergio M Bonesi (SM)

Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
PhotoGreen Lab, Department of Chemistry, University of Pavia, Pavia, Italy.

Mariella Mella (M)

Department of Chemistry, University of Pavia, Pavia, Italy.

Daniele Merli (D)

Department of Chemistry, University of Pavia, Pavia, Italy.

Stefano Protti (S)

PhotoGreen Lab, Department of Chemistry, University of Pavia, Pavia, Italy.

Classifications MeSH