Individual differences in interoceptive accuracy and prediction error in motor functional neurological disorders: A DTI study.
Adult
Anticipation, Psychological
/ physiology
Biological Variation, Population
/ physiology
Cerebral Cortex
Diffusion Tensor Imaging
Female
Gray Matter
/ diagnostic imaging
Heart Rate
/ physiology
Humans
Interoception
/ physiology
Male
Middle Aged
Movement Disorders
/ diagnostic imaging
White Matter
/ diagnostic imaging
Young Adult
DTI
conversion disorder
diffusion tensor imaging
dissociative seizures
functional movement disorder
interoception
psychogenic
Journal
Human brain mapping
ISSN: 1097-0193
Titre abrégé: Hum Brain Mapp
Pays: United States
ID NLM: 9419065
Informations de publication
Date de publication:
01 04 2021
01 04 2021
Historique:
received:
25
08
2020
revised:
12
11
2020
accepted:
22
11
2020
pubmed:
23
2
2021
medline:
5
1
2022
entrez:
22
2
2021
Statut:
ppublish
Résumé
In motor functional neurological disorders (mFND), relationships between interoception (a construct of high theoretical relevance to its pathophysiology) and neuroanatomy have not been previously investigated. This study characterized white matter in mFND patients compared to healthy controls (HCs), and investigated associations between fiber bundle integrity and cardiac interoception. Voxel-based analysis and tractography quantified fractional anisotropy (FA) in 38 mFND patients compared to 38 HCs. Secondary analyses compared functional seizures (FND-seiz; n = 21) or functional movement disorders (n = 17) to HCs. Network lesion mapping identified gray matter origins of implicated fiber bundles. Within-group mFND analyses investigated relationships between FA, heartbeat tracking accuracy and interoceptive trait prediction error (discrepancies between interoceptive accuracy and self-reported bodily awareness). Results were corrected for multiple comparisons, and all findings were adjusted for depression and trait anxiety. mFND and HCs did not show any between-group interoceptive accuracy or FA differences. However, the FND-seiz subgroup compared to HCs showed decreased integrity in right-lateralized tracts: extreme capsule/inferior fronto-occipital fasciculus, arcuate fasciculus, inferior longitudinal fasciculus, and thalamic/striatum to occipital cortex projections. These alterations originated predominantly from the right temporoparietal junction and inferior temporal gyrus. In mFND patients, individual differences in interoceptive accuracy and interoceptive trait prediction error correlated with fiber bundle integrity originating from the insula, temporoparietal junction, putamen and thalamus among other regions. In this first study investigating brain-interoception relationships in mFND, individual differences in interoceptive accuracy and trait prediction error mapped onto multimodal integration-related fiber bundles. Right-lateralized limbic and associative tract disruptions distinguished FND-seiz from HCs.
Identifiants
pubmed: 33615622
doi: 10.1002/hbm.25304
pmc: PMC7927304
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1434-1445Subventions
Organisme : NIMH NIH HHS
ID : K23 MH111983
Pays : United States
Informations de copyright
© 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
Références
Neuroimage Clin. 2019;22:101798
pubmed: 31146322
Brain. 2012 Jan;135(Pt 1):117-23
pubmed: 22075068
J Physiol. 2019 Mar;597(6):1517-1529
pubmed: 30629751
PLoS One. 2020 Jun 5;15(6):e0234321
pubmed: 32502189
Nat Rev Neurosci. 2009 Jan;10(1):59-70
pubmed: 19096369
J Neurol Neurosurg Psychiatry. 2020 Jun;91(6):638-649
pubmed: 32111637
Mol Psychiatry. 2020 Feb 12;:
pubmed: 32051548
Brain Topogr. 2015 Jul;28(4):636-45
pubmed: 25352166
Sci Rep. 2017 Sep 11;7(1):11141
pubmed: 28894296
CNS Spectr. 2020 Sep 04;:1-7
pubmed: 32883381
Hum Brain Mapp. 2018 Jan;39(1):428-439
pubmed: 29080235
Epilepsy Behav. 2015 Apr;45:68-73
pubmed: 25868002
J Psychosom Res. 2020 Feb;129:109907
pubmed: 31901839
Front Neurol. 2019 Aug 14;10:861
pubmed: 31474926
Cogn Neuropsychiatry. 2020 Jul;25(4):294-311
pubmed: 32635804
Clin EEG Neurosci. 2015 Jan;46(1):4-15
pubmed: 25432161
Biol Psychiatry Cogn Neurosci Neuroimaging. 2018 Jun;3(6):501-513
pubmed: 29884281
Brain Sci. 2019 Jun 06;9(6):
pubmed: 31174264
Hum Brain Mapp. 2021 Apr 1;42(5):1434-1445
pubmed: 33615622
J Neurosurg. 2019 Feb 22;132(2):615-623
pubmed: 30797196
Neurology. 2010 Jan 19;74(3):223-8
pubmed: 20083798
J Neuropsychiatry Clin Neurosci. 2001 Summer;13(3):367-73
pubmed: 11514643
Brain Struct Funct. 2010 Jun;214(5-6):451-63
pubmed: 20490545
Nat Hum Behav. 2017;1:
pubmed: 28983518
Nat Neurosci. 2004 Feb;7(2):189-95
pubmed: 14730305
Eur J Neurol. 2018 Jun;25(6):888-e62
pubmed: 29509290
Psychophysiology. 1981 Jul;18(4):483-8
pubmed: 7267933
J Neurol Neurosurg Psychiatry. 2017 May;88(5):425-429
pubmed: 28235779
JAMA Neurol. 2021 Jan 1;78(1):88-101
pubmed: 33104173
Epilepsia. 2020 Jun;61(6):1156-1165
pubmed: 32501547
Neurobiol Dis. 2019 Jul;127:32-44
pubmed: 30798005
Epilepsy Behav. 2012 May;24(1):107-15
pubmed: 22520585
Neuroimage Clin. 2016 Sep 28;12:1022-1034
pubmed: 27995068
Ann Clin Transl Neurol. 2020 Oct;7(10):1973-1984
pubmed: 32991786
Neuroimage Clin. 2017 Oct 18;17:179-187
pubmed: 29085776
J Neurosci. 2012 Aug 1;32(31):10649-61
pubmed: 22855814
JAMA Neurol. 2018 Sep 1;75(9):1132-1141
pubmed: 29868890
J Neurol Neurosurg Psychiatry. 2019 Jun;90(6):704-711
pubmed: 30455406
Biol Psychiatry. 2006 Aug 15;60(4):383-7
pubmed: 16780813
Neuroimage. 2014 Jul 1;94:65-78
pubmed: 24650605
N Engl J Med. 2018 Dec 6;379(23):2237-2245
pubmed: 30575457
Cereb Cortex. 2013 Apr;23(4):806-13
pubmed: 22473843
J Neurol Neurosurg Psychiatry. 2012 Mar;83(3):239-47
pubmed: 22056967
Front Psychiatry. 2018 Oct 05;9:479
pubmed: 30344497
Int J Methods Psychiatr Res. 2018 Jun;27(2):e1596
pubmed: 29193423
Annu Rev Clin Psychol. 2019 May 7;15:97-122
pubmed: 31067416
Psychol Med. 2020 Dec;50(16):2731-2739
pubmed: 31625504
Brain. 2010 May;133(Pt 5):1526-36
pubmed: 20371508
J Neurol Neurosurg Psychiatry. 2017 Jun;88(6):491-497
pubmed: 28416565
Epilepsia. 2000 May;41(5):610-4
pubmed: 10802768
PLoS One. 2013 May 22;8(5):e63850
pubmed: 23717498
J Neurol Neurosurg Psychiatry. 2019 Aug;90(8):929-938
pubmed: 30850473
Brain. 2019 Jul 1;142(7):2137-2148
pubmed: 31167232
Psychoneuroendocrinology. 2017 Nov;85:142-150
pubmed: 28863348
J Neurol Neurosurg Psychiatry. 2017 Dec;88(12):1052-1059
pubmed: 28844071
J Neurol Neurosurg Psychiatry. 2011 Sep;82(9):967-9
pubmed: 21421771
Neuroimage Clin. 2017 Oct 12;17:163-168
pubmed: 29071210
J Neurol Neurosurg Psychiatry. 2019 Jul;90(7):813-821
pubmed: 30409887
J Neurol Neurosurg Psychiatry. 2014 Feb;85(2):236-8
pubmed: 23236016
Neurology. 2018 Nov 13;91(20):e1870-e1879
pubmed: 30305450
J Neuropsychol. 2018 Jun;12(2):341-355
pubmed: 29285879
J Neurol Neurosurg Psychiatry. 2015 Oct;86(10):1106-12
pubmed: 25466258
Neurology. 2016 Aug 9;87(6):564-70
pubmed: 27385746
Front Psychiatry. 2016 Jul 25;7:121
pubmed: 27504098
Epilepsy Curr. 2018 Jul-Aug;18(4):211-216
pubmed: 30254510
Soc Cogn Affect Neurosci. 2016 Jun;11(6):945-51
pubmed: 26940563
Epilepsy Behav. 2013 Jan;26(1):100-1
pubmed: 23182885
JAMA Psychiatry. 2014 Jan;71(1):52-60
pubmed: 24258270
Cereb Cortex. 2018 Oct 1;28(10):3445-3456
pubmed: 28968768
J Neurosci. 2019 Dec 11;39(50):9878-9882
pubmed: 31676604
Psychophysiology. 2018 Sep;55(9):e13084
pubmed: 29633292
Psychol Med. 2017 Jul;47(9):1624-1636
pubmed: 28183377
Biol Psychol. 2016 Feb;114:117-26
pubmed: 26724504
Nature. 2016 Aug 11;536(7615):171-178
pubmed: 27437579
PLoS One. 2015 Apr 10;10(4):e0123273
pubmed: 25859660
Mov Disord. 2007 Jul 15;22(9):1265-71
pubmed: 17486611
Brain Struct Funct. 2016 Dec;221(9):4705-4721
pubmed: 26754839
Brain. 2012 Nov;135(Pt 11):3495-512
pubmed: 22641838
Brain Res. 2015 Sep 16;1620:169-76
pubmed: 25979311
Epilepsia. 2012 Feb;53(2):377-85
pubmed: 22150750
Psychol Med. 2021 Feb;51(3):485-493
pubmed: 31769368
Mol Psychiatry. 2020 Dec;25(12):3350-3359
pubmed: 30120414