Genomic insights into the formation of human populations in East Asia.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
03 2021
03 2021
Historique:
received:
19
03
2020
accepted:
05
02
2021
pubmed:
23
2
2021
medline:
28
5
2021
entrez:
22
2
2021
Statut:
ppublish
Résumé
The deep population history of East Asia remains poorly understood owing to a lack of ancient DNA data and sparse sampling of present-day people
Identifiants
pubmed: 33618348
doi: 10.1038/s41586-021-03336-2
pii: 10.1038/s41586-021-03336-2
pmc: PMC7993749
mid: NIHMS1671260
doi:
Types de publication
Historical Article
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
413-419Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM100233
Pays : United States
Organisme : European Research Council
Pays : International
Références
Cavalli-Sforza, L. L. The Chinese human genome diversity project. Proc. Natl Acad. Sci. USA 95, 11501–11503 (1998).
pubmed: 9751692
pmcid: 33897
doi: 10.1073/pnas.95.20.11501
HUGO Pan-Asian SNP Consortium. Mapping human genetic diversity in Asia. Science 326, 1541–1545 (2009).
doi: 10.1126/science.1177074
Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).
pubmed: 25731166
pmcid: 5048219
doi: 10.1038/nature14317
Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).
pubmed: 26062507
doi: 10.1038/nature14507
Damgaard, P. B. et al. 137 ancient human genomes from across the Eurasian steppes. Nature 557, 369–374 (2018).
pubmed: 29743675
doi: 10.1038/s41586-018-0094-2
Narasimhan, V. M. et al. The formation of human populations in South and Central Asia. Science 365, eaat7487 (2019).
pubmed: 31488661
pmcid: 6822619
doi: 10.1126/science.aat7487
Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).
pubmed: 26098372
pmcid: 4537386
doi: 10.1038/nature14558
Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA 110, 2223–2227 (2013).
pubmed: 23341637
pmcid: 3568306
doi: 10.1073/pnas.1221359110
Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014).
pubmed: 25420514
pmcid: 4248462
doi: 10.1186/s12859-014-0356-4
Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).
pubmed: 17194218
pmcid: 1713260
doi: 10.1371/journal.pgen.0020190
Loh, P. R. et al. Inferring admixture histories of human populations using linkage disequilibrium. Genetics 193, 1233–1254 (2013).
pubmed: 23410830
pmcid: 3606100
doi: 10.1534/genetics.112.147330
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).
pubmed: 19648217
pmcid: 2752134
doi: 10.1101/gr.094052.109
Yang, M. A. et al. 40,000-year-old individual from Asia provides insight into early population structure in Eurasia. Curr. Biol. 27, 3202–3208 (2017).
pubmed: 29033327
pmcid: 6592271
doi: 10.1016/j.cub.2017.09.030
Massilani, D. et al. Denisovan ancestry and population history of early East Asians. Science 370, 579–583 (2020).
pubmed: 33122380
doi: 10.1126/science.abc1166
Wang, C. C. & Li, H. Inferring human history in East Asia from Y chromosomes. Investig. Genet. 4, 11 (2013).
pubmed: 23731529
pmcid: 3687582
doi: 10.1186/2041-2223-4-11
Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).
pubmed: 22960212
pmcid: 3522152
doi: 10.1534/genetics.112.145037
Yang, M. A. et al. Ancient DNA indicates human population shifts and admixture in northern and southern China. Science 369, 282–288 (2020).
pubmed: 32409524
doi: 10.1126/science.aba0909
Nakashima, A., Ishida, H., Shigematsu, M., Goto, M. & Hanihara, T. Nonmetric cranial variation of Jomon Japan: implications for the evolution of eastern Asian diversity. Am. J. Hum. Biol. 22, 782–790 (2010).
pubmed: 20721979
doi: 10.1002/ajhb.21083
Bellwood, P. & Renfrew, C. Examining the Farming/Language Dispersal Hypothesis (McDonald Institute for Archaeological Research, 2002).
Robbeets, M. & Savelyev, A. The Oxford Guide to the Transeurasian Languages (Oxford Univ. Press, 2020).
Siska, V. et al. Genome-wide data from two early Neolithic East Asian individuals dating to 7700 years ago. Sci. Adv. 3, e1601877 (2017).
pubmed: 28164156
pmcid: 5287702
doi: 10.1126/sciadv.1601877
Kamberov, Y. G. et al. Modeling recent human evolution in mice by expression of a selected EDAR variant. Cell 152, 691–702 (2013).
pubmed: 23415220
pmcid: 3575602
doi: 10.1016/j.cell.2013.01.016
Zhang, X. L. et al. The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago. Science 362, 1049–1051 (2018).
pubmed: 30498126
doi: 10.1126/science.aat8824
Chen, F. H. et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science 347, 248–250 (2015).
pubmed: 25593179
doi: 10.1126/science.1259172
Zhang, M., Yan, S., Pan, W. & Jin, L. Phylogenetic evidence for Sino-Tibetan origin in northern China in the Late Neolithic. Nature 569, 112–115 (2019).
pubmed: 31019300
doi: 10.1038/s41586-019-1153-z
van Driem, G. in The Peopling of East Asia: Putting Together Archaeology, Linguistics and Genetics (eds Sagart, L. et al.) 81–106 (Routledge, 2005).
Liu, S. et al. Genomic analyses from non-invasive prenatal testing reveal genetic associations, patterns of viral infections, and Chinese population history. Cell 175, 347–359 (2018).
pubmed: 30290141
doi: 10.1016/j.cell.2018.08.016
Chiang, C. W. K., Mangul, S., Robles, C. & Sankararaman, S. A comprehensive map of genetic variation in the world’s largest ethnic group—Han Chinese. Mol. Biol. Evol. 35, 2736–2750 (2018).
pubmed: 30169787
pmcid: 6693441
doi: 10.1093/molbev/msy170
Reich, D. et al. Reconstructing Native American population history. Nature 488, 370–374 (2012).
pubmed: 22801491
pmcid: 3615710
doi: 10.1038/nature11258
Lipson, M. et al. Ancient genomes document multiple waves of migration in Southeast Asian prehistory. Science 361, 92–95 (2018).
pubmed: 29773666
pmcid: 6476732
doi: 10.1126/science.aat3188
McColl, H. et al. The prehistoric peopling of Southeast Asia. Science 361, 88–92 (2018).
pubmed: 29976827
doi: 10.1126/science.aat3628
Wang, L. X. et al. Reconstruction of Y-chromosome phylogeny reveals two neolithic expansions of Tibeto-Burman populations. Mol. Genet. Genomics 293, 1293–1300 (2018).
pubmed: 29923068
doi: 10.1007/s00438-018-1461-2
Ge, J. X., Wu, S. D. & Chao, S. J. Zhongguo yimin shi (The Migration History of China) (Fujian People’s Publishing House, 1997).
Ning, C. et al. Ancient genomes from northern China suggest links between subsistence changes and human migration. Nat. Commun. 11, 2700 (2020).
pubmed: 32483115
pmcid: 7264253
doi: 10.1038/s41467-020-16557-2
Wei, L. H. et al. Phylogeography of Y-chromosome haplogroup O3a2b2-N6 reveals patrilineal traces of Austronesian populations on the eastern coastal regions of Asia. PLoS ONE 12, e0175080 (2017).
pubmed: 28380021
pmcid: 5381892
doi: 10.1371/journal.pone.0175080
Ko, A. M. et al. Early Austronesians: into and out of Taiwan. Am. J. Hum. Genet. 94, 426–436 (2014).
pubmed: 24607387
pmcid: 3951936
doi: 10.1016/j.ajhg.2014.02.003
Skoglund, P. et al. Genomic insights into the peopling of the Southwest Pacific. Nature 538, 510–513 (2016).
pubmed: 27698418
pmcid: 5515717
doi: 10.1038/nature19844
Lipson, M. et al. Reconstructing Austronesian population history in island Southeast Asia. Nat. Commun. 5, 4689 (2014).
pubmed: 25137359
doi: 10.1038/ncomms5689
Bellwood, P. The checkered prehistory of rice movement southwards as a domesticated cereal—from the Yangzi to the equator. Rice 4, 93–103 (2011).
doi: 10.1007/s12284-011-9068-9
Yang, X. et al. Early millet use in northern China. Proc. Natl Acad. Sci. USA 109, 3726–3730 (2012).
pubmed: 22355109
pmcid: 3309722
doi: 10.1073/pnas.1115430109
Wilkin, S. et al. Dairy pastoralism sustained eastern Eurasian steppe populations for 5,000 years. Nat. Ecol. Evol. 4, 346–355 (2020).
pubmed: 32127685
pmcid: 7212056
doi: 10.1038/s41559-020-1120-y
Kovalev, A. The great migration of the Chemurchek people from France to the Altai in the early 3rd millennium BCE. Int. J. Eurasian Stud. 1, 1–58 (2011).
Jeong, C. et al. A dynamic 6,000-year genetic history of Eurasia’s Eastern Steppe. Cell 183, 890–904 (2020).
pubmed: 33157037
pmcid: 7664836
doi: 10.1016/j.cell.2020.10.015
Ning, C. et al. Ancient genomes reveal Yamnaya-related ancestry and a potential source of Indo-European speakers in Iron Age Tianshan. Curr. Biol. 29, 2526–2532 (2019).
pubmed: 31353181
doi: 10.1016/j.cub.2019.06.044
Bellwood, P. in The Encyclopedia of Global Human Migration (Wiley-Blackwell, 2013).
Mallory, J. P. in Search of the Indo-Europeans: Language, Archaeology and Myth (Thames & Hudson, 1991).
Anthony, D. The Horse, the Wheel, and Language: How Bronze-Age Riders from the Eurasian Steppes Shaped the Modern World (Princeton Univ. Press, 2007).
Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).
pubmed: 24952747
pmcid: 4116295
doi: 10.1038/ng.3015
Wang, K., Mathieson, I., O’Connell, J. & Schiffels, S. Tracking human population structure through time from whole genome sequences. PLoS Genet. 16, e1008552 (2020).
pubmed: 32150539
pmcid: 7082067
doi: 10.1371/journal.pgen.1008552
Jeong, C. et al. Long-term genetic stability and a high-altitude East Asian origin for the peoples of the high valleys of the Himalayan arc. Proc. Natl Acad. Sci. USA. 113, 7485–7490 (2016).
pubmed: 27325755
pmcid: 4941446
doi: 10.1073/pnas.1520844113
Pinhasi, R., Fernandes, D. M., Sirak, K. & Cheronet, O. Isolating the human cochlea to generate bone powder for ancient DNA analysis. Nat. Protocols 14, 1194–1205 (2019).
pubmed: 30842617
doi: 10.1038/s41596-019-0137-7
Sirak, K. A. et al. A minimally-invasive method for sampling human petrous bones from the cranial base for ancient DNA analysis. Biotechniques 62, 283–289 (2017).
pubmed: 28625158
doi: 10.2144/000114558
Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).
pubmed: 24019490
pmcid: 3785785
doi: 10.1073/pnas.1314445110
Korlević, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59, 87–93 (2015).
pubmed: 26260087
doi: 10.2144/000114320
Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protocols 13, 2447–2461 (2018).
pubmed: 30323185
doi: 10.1038/s41596-018-0050-5
Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Phil. Trans. R. Soc. Lond. B 370, 20130624 (2015).
doi: 10.1098/rstb.2013.0624
Gansauge, M. T. & Meyer, M. Selective enrichment of damaged DNA molecules for ancient genome sequencing. Genome Res. 24, 1543–1549 (2014).
pubmed: 25081630
pmcid: 4158764
doi: 10.1101/gr.174201.114
Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).
pubmed: 22936568
pmcid: 3617501
doi: 10.1126/science.1224344
Maricic, T., Whitten, M. & Pääbo, S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS ONE 5, e14004 (2010).
pubmed: 21103372
pmcid: 2982832
doi: 10.1371/journal.pone.0014004
Rohland, N. & Hofreiter, M. Ancient DNA extraction from bones and teeth. Nat. Protocols 2, 1756–1762 (2007).
pubmed: 17641642
doi: 10.1038/nprot.2007.247
John, J. S. SeqPrep. GitHub https://github.com/jstjohn/SeqPrep (2011).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168
pmcid: 2705234
doi: 10.1093/bioinformatics/btp324
Behar, D. M. et al. A “Copernican” reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 90, 675–684 (2012).
pubmed: 22482806
pmcid: 3322232
doi: 10.1016/j.ajhg.2012.03.002
Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016).
pubmed: 27084951
pmcid: 4987869
doi: 10.1093/nar/gkw233
Günther, T. & Nettelblad, C. The presence and impact of reference bias on population genomic studies of prehistoric human populations. PLoS Genet. 15, e1008302 (2019).
pubmed: 31348818
pmcid: 6685638
doi: 10.1371/journal.pgen.1008302
Kennett, D. J. et al. Archaeogenomic evidence reveals prehistoric matrilineal dynasty. Nat. Commun. 8, 14115 (2017).
pubmed: 28221340
pmcid: 5321759
doi: 10.1038/ncomms14115
Lohse, J. C., Madsen, D. B., Culleton, B. J. & Kennett, D. J. Isotope paleoecology of episodic mid-to-late Holocene bison population expansions in the southern Plains, U.S.A. Quat. Sci. Rev. 102, 14–26 (2014).
doi: 10.1016/j.quascirev.2014.07.021
Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).
doi: 10.1017/RDC.2020.41
Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
doi: 10.1017/S0033822200033865
Rasmussen, M. et al. An Aboriginal Australian genome reveals separate human dispersals into Asia. Science 334, 94–98 (2011).
pubmed: 21940856
pmcid: 3991479
doi: 10.1126/science.1211177
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).
pubmed: 25722852
pmcid: 4342193
doi: 10.1186/s13742-015-0047-8
Busing, F. T. A., Meijer, E. & van der Leeden, R. Delete-m jackknife for unequal m. Stat. Comput. 9, 3–8 (1999).
doi: 10.1023/A:1008800423698
Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).
pubmed: 27654912
pmcid: 5161557
doi: 10.1038/nature18964
Monroy Kuhn, J. M., Jakobsson, M. & Günther, T. Estimating genetic kin relationships in prehistoric populations. PLoS ONE 13, e0195491 (2018).
pubmed: 29684051
pmcid: 5912749
doi: 10.1371/journal.pone.0195491
Ringbauer, H., Novembre, J. & Steinruecken, M. Human parental relatedness through time — detecting runs of homozygosity in ancient DNA. Preprint at bioRxiv https://doi.org/10.1101/2020.05.31.126912 (2020).