Gatorbulin-1, a distinct cyclodepsipeptide chemotype, targets a seventh tubulin pharmacological site.
Antineoplastic Agents
/ chemical synthesis
Apoptosis
/ drug effects
Bacterial Proteins
/ chemical synthesis
Binding Sites
Biological Products
/ chemical synthesis
Cell Line, Tumor
Colchicine
/ chemistry
Crystallography, X-Ray
Cyanobacteria
/ chemistry
Depsipeptides
/ chemical synthesis
Drug Discovery
HCT116 Cells
Humans
Maytansine
/ chemistry
Microtubules
/ drug effects
Models, Molecular
Protein Binding
Protein Conformation, alpha-Helical
Protein Conformation, beta-Strand
Protein Interaction Domains and Motifs
Pyrones
/ chemistry
Taxoids
/ chemistry
Tubulin
/ chemistry
Tubulin Modulators
/ chemical synthesis
Vinca Alkaloids
/ chemistry
cyanobacteria
marine natural product
microtubules
total synthesis
tubulin
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
02 03 2021
02 03 2021
Historique:
entrez:
23
2
2021
pubmed:
24
2
2021
medline:
5
8
2021
Statut:
ppublish
Résumé
Tubulin-targeted chemotherapy has proven to be a successful and wide spectrum strategy against solid and liquid malignancies. Therefore, new ways to modulate this essential protein could lead to new antitumoral pharmacological approaches. Currently known tubulin agents bind to six distinct sites at α/β-tubulin either promoting microtubule stabilization or depolymerization. We have discovered a seventh binding site at the tubulin intradimer interface where a novel microtubule-destabilizing cyclodepsipeptide, termed gatorbulin-1 (GB1), binds. GB1 has a unique chemotype produced by a marine cyanobacterium. We have elucidated this dual, chemical and mechanistic, novelty through multidimensional characterization, starting with bioactivity-guided natural product isolation and multinuclei NMR-based structure determination, revealing the modified pentapeptide with a functionally critical hydroxamate group; and validation by total synthesis. We have investigated the pharmacology using isogenic cancer cell screening, cellular profiling, and complementary phenotypic assays, and unveiled the underlying molecular mechanism by in vitro biochemical studies and high-resolution structural determination of the α/β-tubulin-GB1 complex.
Identifiants
pubmed: 33619102
pii: 2021847118
doi: 10.1073/pnas.2021847118
pmc: PMC7936326
pii:
doi:
Substances chimiques
Antineoplastic Agents
0
Bacterial Proteins
0
Biological Products
0
Depsipeptides
0
Pyrones
0
Taxoids
0
Tubulin
0
Tubulin Modulators
0
Vinca Alkaloids
0
Maytansine
14083FR882
pironetin
151519-02-7
Colchicine
SML2Y3J35T
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIGMS NIH HHS
ID : P41 GM086210
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA172310
Pays : United States
Organisme : NCI NIH HHS
ID : R50 CA211487
Pays : United States
Déclaration de conflit d'intérêts
Competing interest statement: The University of Florida has filed a patent application relating to the content of this article.
Références
Molecules. 2020 May 08;25(9):
pubmed: 32397127
J Nat Prod. 2015 Mar 27;78(3):486-92
pubmed: 25635943
J Cell Biol. 2013 Feb 4;200(3):259-70
pubmed: 23358242
FEBS J. 2016 Jan;283(1):102-11
pubmed: 26462166
Eur J Biochem. 2003 Sep;270(18):3822-8
pubmed: 12950266
J Nat Prod. 2001 Jul;64(7):907-10
pubmed: 11473421
J Org Chem. 2000 Oct 6;65(20):6770-2
pubmed: 11052134
ACS Chem Biol. 2016 May 20;11(5):1322-31
pubmed: 26938486
J Med Chem. 2020 Aug 13;63(15):8495-8501
pubmed: 32657585
Curr Biol. 2016 Jul 11;26(13):1713-1721
pubmed: 27321995
Nat Commun. 2017 Sep 14;8(1):542
pubmed: 28912485
J Med Chem. 2007 Jun 14;50(12):2865-74
pubmed: 17497841
Synlett. 2007 Jun 1;2007(10):1513-1516
pubmed: 19593390
ChemMedChem. 2011 Jan 3;6(1):54-9
pubmed: 21154805
Nat Prod Rep. 2020 May 1;37(5):634-652
pubmed: 31764930
Nat Rev Cancer. 2003 Oct;3(10):721-32
pubmed: 13130303
Org Lett. 2002 Mar 7;4(5):711-4
pubmed: 11869108
Clin Cancer Res. 2009 Apr 15;15(8):2594-601
pubmed: 19351751
Mini Rev Med Chem. 2013 Jul;13(9):1311-26
pubmed: 23701657
Org Lett. 2010 Apr 16;12(8):1792-5
pubmed: 20297810
Eur J Cell Biol. 2020 May;99(4):151075
pubmed: 32414588
Chem Commun (Camb). 2010 Jun 21;46(23):4021-42
pubmed: 20405066
Cancer Res. 1999 Nov 15;59(22):5830-5
pubmed: 10582706
Bioorg Med Chem Lett. 2014 Aug 15;24(16):3728-31
pubmed: 25070421
Phytochemistry. 2009 Dec;70(17-18):2058-63
pubmed: 19815244
Cancer Res. 2008 Nov 1;68(21):8881-8
pubmed: 18974132
Nat Prod Rep. 2020 Jun 24;37(6):744-746
pubmed: 32525143
J Am Chem Soc. 2016 May 11;138(18):5833-6
pubmed: 27096543
Org Lett. 2009 Feb 5;11(3):733-6
pubmed: 19175351
J Biol Chem. 1991 Feb 15;266(5):2890-6
pubmed: 1993663
Appl Environ Microbiol. 2009 May;75(9):2879-88
pubmed: 19270119
Mar Drugs. 2010 Jun 04;8(6):1803-16
pubmed: 20631871
Int J Mol Sci. 2017 Jul 04;18(7):
pubmed: 28677634
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13817-21
pubmed: 25114240
Nat Commun. 2018 May 29;9(1):2106
pubmed: 29844393
Nature. 2004 Mar 11;428(6979):198-202
pubmed: 15014504
J Comb Chem. 2010 Sep 13;12(5):655-8
pubmed: 20831264
Chembiochem. 2020 Aug 17;21(16):2356-2366
pubmed: 32237262
Nature. 2005 May 26;435(7041):519-22
pubmed: 15917812
J Org Chem. 2003 Jan 10;68(1):83-91
pubmed: 12515465
J Biol Chem. 1990 Oct 5;265(28):17141-9
pubmed: 2211617
J Mol Biol. 2016 Jul 31;428(15):2981-8
pubmed: 27395016
Planta Med. 2009 Apr;75(5):528-33
pubmed: 19214948
Nature. 2006 May 25;441(7092):437-43
pubmed: 16724055