Temperature thresholds of ecosystem respiration at a global scale.
Journal
Nature ecology & evolution
ISSN: 2397-334X
Titre abrégé: Nat Ecol Evol
Pays: England
ID NLM: 101698577
Informations de publication
Date de publication:
04 2021
04 2021
Historique:
received:
21
08
2020
accepted:
14
01
2021
pubmed:
24
2
2021
medline:
16
4
2021
entrez:
23
2
2021
Statut:
ppublish
Résumé
Ecosystem respiration is a major component of the global terrestrial carbon cycle and is strongly influenced by temperature. The global extent of the temperature-ecosystem respiration relationship, however, has not been fully explored. Here, we test linear and threshold models of ecosystem respiration across 210 globally distributed eddy covariance sites over an extensive temperature range. We find thresholds to the global temperature-ecosystem respiration relationship at high and low air temperatures and mid soil temperatures, which represent transitions in the temperature dependence and sensitivity of ecosystem respiration. Annual ecosystem respiration rates show a markedly reduced temperature dependence and sensitivity compared to half-hourly rates, and a single mid-temperature threshold for both air and soil temperature. Our study indicates a distinction in the influence of environmental factors, including temperature, on ecosystem respiration between latitudinal and climate gradients at short (half-hourly) and long (annual) timescales. Such climatological differences in the temperature sensitivity of ecosystem respiration have important consequences for the terrestrial net carbon sink under ongoing climate change.
Identifiants
pubmed: 33619357
doi: 10.1038/s41559-021-01398-z
pii: 10.1038/s41559-021-01398-z
doi:
Substances chimiques
Soil
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
487-494Subventions
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/S019952/1
Pays : United Kingdom
Références
Cao, M. & Woodward, F. I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393, 249–252 (1998).
doi: 10.1038/30460
Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).
doi: 10.1038/nature06591
Allen, A. P., Gillooly, J. F. & Brown, J. H. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19, 202–213 (2005).
doi: 10.1111/j.1365-2435.2005.00952.x
Enquist, B. J. et al. Scaling metabolism from organisms to ecosystems. Nature 423, 639–642 (2003).
doi: 10.1038/nature01671
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
doi: 10.1126/science.1061967
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
doi: 10.1890/03-9000
Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).
doi: 10.1175/JCLI-D-12-00579.1
Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).
doi: 10.1038/nature04514
Lenton, T. M. & Huntingford, C. Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model. Glob. Change Biol. 9, 1333–1352 (2003).
doi: 10.1046/j.1365-2486.2003.00674.x
Song, B. et al. Divergent apparent temperature sensitivity of terrestrial ecosystem respiration. J. Plant Ecol. 7, 419–428 (2014).
doi: 10.1093/jpe/rtu014
Lloyd, J. & Taylor, J. A. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315–323 (1994).
Mahecha, M. D. et al. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329, 838–840 (2010).
doi: 10.1126/science.1189587
Yvon-Durocher, G. et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476 (2012).
doi: 10.1038/nature11205
Johnston, A. S. A. & Sibly, R. M. The influence of soil communities on the temperature sensitivity of soil respiration. Nat. Ecol. Evol. 2, 1597–1602 (2018).
doi: 10.1038/s41559-018-0648-6
Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).
doi: 10.1073/pnas.1015178108
Buckley, L. B. & Huey, R. B. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Glob. Change Biol. 22, 3829–3842 (2016).
doi: 10.1111/gcb.13313
Gill, A. L. & Finzi, A. C. Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale. Ecol. Lett. 19, 1419–1428 (2016).
doi: 10.1111/ele.12690
Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).
doi: 10.1038/s41586-018-0848-x
Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).
doi: 10.1038/ngeo846
Michaletz, S. T., Cheng, D., Kerkhoff, A. J. & Enquist, B. J. Convergence of terrestrial plant production across global climate gradients. Nature 512, 39–43 (2014).
doi: 10.1038/nature13470
Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).
doi: 10.1038/s41597-020-0534-3
Monson, R. K. et al. Winter forest soil respiration controlled by climate and microbial community composition. Nature 439, 711–714 (2006).
doi: 10.1038/nature04555
Mauder, M. et al. A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric. Meteorol. 169, 122–135 (2013).
doi: 10.1016/j.agrformet.2012.09.006
Kim, D.-G., Vargas, R., Bond-Lamberty, B. & Turetsky, M. R. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences 9, 2459–2483 (2012).
doi: 10.5194/bg-9-2459-2012
Du, E. et al. Winter soil respiration during soil-freezing process in a boreal forest in Northeast China. J. Plant Ecol. 6, 349–357 (2013).
doi: 10.1093/jpe/rtt012
Schuur, E. A. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
doi: 10.1038/nature14338
Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817–822 (2017).
doi: 10.1038/nclimate3421
Bond-Lamberty, B. P. & Thomson, A. M. A Global Database of Soil Respiration Data Version 4.0 (ORNL DAAC, 2018); https://doi.org/10.3334/ORNLDAAC/1578
Zhang, Z. et al. A temperature threshold to identify the driving climate forces of the respiratory process in terrestrial ecosystems. Eur. J. Soil Biol. 89, 1–8 (2018).
doi: 10.1016/j.ejsobi.2018.08.001
Yang, Y., Donohue, R. J., McVicar, T. R., Roderick, M. L. & Beck, H. E. Long-term CO
doi: 10.1002/2016JG003475
Fleischer, K. et al. Amazon forest response to CO
doi: 10.1038/s41561-019-0404-9
Padfield, D. et al. Metabolic compensation constrains the temperature dependence of gross primary production. Ecol. Lett. 20, 1250–1260 (2017).
doi: 10.1111/ele.12820
Atkin, O. K. & Tjoelker, M. G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8, 343–351 (2003).
doi: 10.1016/S1360-1385(03)00136-5
Huntingford, C. et al. Implications of improved representations of plant respiration in a changing climate. Nat. Commun. 8, 1602 (2017).
doi: 10.1038/s41467-017-01774-z
Niu, S. et al. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytol. 194, 775–783 (2012).
doi: 10.1111/j.1469-8137.2012.04095.x
Rind, D. The consequences of not knowing low- and high-latitude climate sensitivity. Bull. Am. Meteorol. Soc. 89, 855–864 (2008).
doi: 10.1175/2007BAMS2520.1
Liu, Z. et al. Increased high-latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition. Glob. Change Biol. 26, 682–696 (2020).
doi: 10.1111/gcb.14863
Haverd, V. et al. Higher than expected CO
doi: 10.1111/gcb.14950
Tagesson, T. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evol. 4, 202–209 (2020).
doi: 10.1038/s41559-019-1090-0
Climate Research Unit, University of East Anglia Average Annual Temperature. Atlas Biosphere (Center for Sustainability and the Global Environment, accessed 6 February 2020); https://nelson.wisc.edu/sage/data-and-models/atlas/maps.php