Use of the inverse solution guidance algorithm method for RF ablation catheter guidance.

RF ablation catheter guidance inverse solution guidance algorithm single equivalent moving dipole

Journal

Journal of cardiovascular electrophysiology
ISSN: 1540-8167
Titre abrégé: J Cardiovasc Electrophysiol
Pays: United States
ID NLM: 9010756

Informations de publication

Date de publication:
05 2021
Historique:
revised: 05 02 2021
received: 24 11 2020
accepted: 13 02 2021
pubmed: 25 2 2021
medline: 11 8 2021
entrez: 24 2 2021
Statut: ppublish

Résumé

We previously introduced the inverse solution guidance algorithm (ISGA) methodology using a Single Equivalent Moving Dipole model of cardiac electrical activity to localize both the exit site of a re-entrant circuit and the tip of a radiofrequency (RF) ablation catheter. The purpose of this study was to investigate the use of ISGA for ablation catheter guidance in an animal model. Ventricular tachycardia (VT) was simulated by rapid ventricular pacing at a target site in eleven Yorkshire swine. The ablation target was established using three different techniques: a pacing lead placed into the ventricular wall at the mid-myocardial level (Type-1), an intracardiac mapping catheter (Type-2), and an RF ablation catheter placed at a random position on the endocardial surface (Type-3). In each experiment, one operator placed the catheter/pacing lead at the target location, while another used the ISGA system to manipulate the RF ablation catheter starting from a random ventricular location to locate the target. The average localization error of the RF ablation catheter tip was 0.31 ± 0.08 cm. After analyzing approximately 35 cardiac cycles of simulated VT, the ISGA system's accuracy in locating the target was 0.4 cm after four catheter movements in the Type-1 experiment, 0.48 cm after six movements in the Type-2 experiment, and 0.67 cm after seven movements in the Type-3 experiment. We demonstrated the feasibility of using the ISGA method to guide an ablation catheter to the origin of a VT focus by analyzing a few beats of body surface potentials without electro-anatomic mapping.

Identifiants

pubmed: 33625757
doi: 10.1111/jce.14965
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1281-1289

Informations de copyright

© 2021 Wiley Periodicals LLC.

Références

Delacretaz E, Stevenson WG. Catheter ablation of ventricular tachycardia in patients with coronary heart disease: part I: Mapping. Pacing Clin Electrophysiol. 2001;24(8 Pt 1):1261-1277.
Strickberger SA, Man KC, Daoud EG, et al. A prospective evaluation of catheter ablation of ventricular tachycardia as adjuvant therapy in patients with coronary artery disease and an implantable cardioverter-defibrillator. Circulation. 1997;96(5):1525-1531.
Dinov B, Arya A, Schratter A, et al. Catheter ablation of ventricular tachycardia and mortality in patients with nonischemic dilated cardiomyopathy: can noninducibility after ablation be a predictor for reduced mortality? Circ Arrhythm Electrophysiol. 2015;8(3):598-605.
Dukkipati SR, Koruth JS, Choudry S, Miller MA, Whang W, Reddy VY. Catheter ablation of ventricular tachycardia in structural heart disease: indications, strategies, and outcomes-part II. J Am Coll Cardiol. 2017;70(23):2924-2941.
Kadish AH, Neelagaru S. Monomorphic ventricular tachycardia in nonischemic disease: what have we learned? J Cardiovasc Electrophysiol. 2000;11(1):18-20.
Kuck KH, Schaumann A, Eckardt L, et al. Catheter ablation of stable ventricular tachycardia before defibrillator implantation in patients with coronary heart disease (VTACH): a multicentre randomised controlled trial. Lancet. 2010;375(9708):31-40.
Lin D, Hsia HH, Gerstenfeld EP, et al. Idiopathic fascicular left ventricular tachycardia: linear ablation lesion strategy for noninducible or nonsustained tachycardia. Heart Rhythm. 2005;2(9):934-939.
Sekiguchi Y, Aonuma K, Takahashi A, et al. Electrocardiographic and electrophysiologic characteristics of ventricular tachycardia originating within the pulmonary artery. J Am Coll Cardiol. 2005;45(6):887-895.
Stevenson WG, Wilber DJ, Natale A, et al. Irrigated radiofrequency catheter ablation guided by electroanatomic mapping for recurrent ventricular tachycardia after myocardial infarction: the multicenter thermocool ventricular tachycardia ablation trial. Circulation. 2008;118(25):2773-2782.
Tanawuttiwat T, Nazarian S, Calkins H. The role of catheter ablation in the management of ventricular tachycardia. Eur Heart J. 2016;37(7):594-609.
Aliot EM, Stevenson WG, Almendral-Garrote JM, et al. EHRA/HRS expert consensus on catheter ablation of ventricular arrhythmias: developed in a partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society (HRS); in collaboration with the American College of Cardiology (ACC) and the American Heart Association (AHA). Europace. 2009;11(6):771-817.
Dixit S, Callans DJ. Mapping for ventricular tachycardia. Card Electrophysiol Rev. 2002;6(4):436-441.
Sadek MM, Schaller RD, Supple GE, et al. Ventricular tachycardia ablation: the right approach for the right patient. Arrhythm Electrophysiol Rev. 2014;3(3):161-167.
Chik WW, Marchlinski FE. Ablation of ventricular arrhythmia in patients with heart failure. Heart Fail Clin. 2015;11(2):319-336.
Josephson ME, Anter E. Substrate mapping for ventricular tachycardia: assumptions and misconceptions. JACC Clin Electrophysiol. 2015;1(5):341-352.
Komatsu Y. Substrate-based approach for ventricular tachycardia in structural heart disease: tips for mapping and ablation. J Arrhythm. 2014;30(4):272-282.
Miller MA, Dukkipati SR, Chinitz JS, et al. Percutaneous hemodynamic support with Impella 2.5 during scar-related ventricular tachycardia ablation (PERMIT 1). Circ Arrhythm Electrophysiol. 2013;6(1):151-159.
Miller MA, Dukkipati SR, Mittnacht AJ, et al. Activation and entrainment mapping of hemodynamically unstable ventricular tachycardia using a percutaneous left ventricular assist device. J Am Coll Cardiol. 2011;58(13):1363-1371.
Sacher F, Lim HS, Derval N, et al. Substrate mapping and ablation for ventricular tachycardia: the LAVA approach. J Cardiovasc Electrophysiol. 2015;26(4):464-471.
Armoundas AA, Feldman AB, Mukkamala R, Cohen RJ. A single equivalent moving dipole model: an efficient approach for localizing sites of origin of ventricular electrical activation. Ann Biomed Eng. 2003;31:564-576.
Armoundas AA, Feldman AB, Mukkamala R, et al. Statistical accuracy of a moving equivalent dipole method to identify sites of origin of cardiac electrical activation. IEEE Trans Biomed Eng. 2003;50:1360-1370.
Armoundas AA, Feldman AB, Sherman DA, Cohen RJ. Applicability of the single equivalent point dipole model to represent a spatially distributed bio-electrical source. Med Biol Eng Comput. 2001;39(5):562-570.
Barley ME, Armoundas AA, Cohen RJ. A method for guiding ablation catheters to arrhythmogenic sites using body surface electrocardiographic signals. IEEE Trans Biomed Eng. 2009;56(3):810-819.
Barley ME, Choppy KJ, Galea AM, et al. Validation of a novel catheter guiding method for the ablative therapy of ventricular tachycardia in a phantom model. IEEE Trans Biomed Eng. 2009;56(3):907-910.
Lee K, Lv W, Ter-Ovanesyan E, et al. Cardiac ablation catheter guidance by means of a single equivalent moving dipole inverse algorithm. Pacing Clin Electrophysiol. 2013;36:811-822.
Lv W, Lee K, Arai T, et al. Accuracy of cardiac ablation catheter guidance by means of a single equivalent moving dipole inverse algorithm to identify sites of origin of cardiac electrical activation. J Interv Card Electrophysiol. 2020;58(3):323-331.
Sohn K, Wener Lv Lv, Kichang Lee L, et al. The single equivalent moving dipole model does not require spatial anatomical information to determine cardiac sources of activation. IEEE J Biomed Health Inform. 2014;18(1):222-230.
Sohn K, Lv W, Lee K, et al. A method to noninvasively identify cardiac bioelectrical sources. Pacing Clin Electrophysiol. 2014;37:1038-1050.
Di Biase L, Burkhardt JD, Lakkireddy D, et al. Ablation of stable VTs versus substrate ablation in ischemic cardiomyopathy: the VISTA randomized multicenter trial. J Am Coll Cardiol. 2015;66(25):2872-2882.
Stevenson WG, Friedman PL, Kocovic D, Sager PT, Saxon LA, Pavri B. Radiofrequency catheter ablation of ventricular tachycardia after myocardial infarction. Circulation. 1998;98:308-314.
Sohn K, Armoundas AA. On the efficiency and accuracy of the single equivalent moving dipole method to identify sites of cardiac electrical activation. Med Biol Eng Comput. 2016;54(10):1611-1619.
Ilg K, Baman TS, Gupta SK, et al. Assessment of radiofrequency ablation lesions by CMR imaging after ablation of idiopathic ventricular arrhythmias. JACC Cardiovasc Imaging 2010;3(3):278-285.
Fenelon G, Pereira KP, de Paola AA. Epicardial radiofrequency ablation of ventricular myocardium: factors affecting lesion formation and damage to adjacent structures. J Interv Card Electrophysiol. 2006;15(1):57-63.
Stevenson WG, Sager PT, Natterson PD, Saxon LA, Middlekauff HR, Wiener I. Relation of pace mapping QRS configuration and conduction delay to ventricular tachycardia reentry circuits in human infarct scars. J Am Coll Cardiol. 1995;26(2):481-488.
Gornick CC, Adler SW, Pederson B, Hauck J, Budd J, Schweitzer J. Validation of a new noncontact catheter system for electroanatomic mapping of left ventricular endocardium. Circulation. 1999;99(6):829-835.
Okishige K, Kawabata M, Umayahara S, et al. Radiofrequency catheter ablation of various kinds of arrhythmias guided by virtual electrograms using a noncontact, computerized mapping system. Circ J. 2003;67(5):455-460.
Berger T, Fischer G, Pfeifer B, et al. Single-beat noninvasive imaging of cardiac electrophysiology of ventricular pre-excitation. J Am Coll Cardiol. 2006;48(10):2045-2052.
Cheng LK, Sands GB, French RL, et al. Rapid construction of a patient-specific torso model from 3D ultrasound for non-invasive imaging of cardiac electrophysiology. Med Biol Eng Comput. 2005;43(3):325-330.
Ramanathan C, Ghanem RN, Jia P, Ryu K, Rudy Y. Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat Med. 2004:10(4):422-428.
Wang Y, Cuculich PS, Zhang J, et al. Noninvasive electroanatomic mapping of human ventricular arrhythmias with electrocardiographic imaging. Sci Transl Med. 2011;3(98):98ra84.
Weiss EH, Sayadi O, Ramaswamy P, et al. An optimized method for the estimation of the respiratory rate from electrocardiographic signals: implications for estimating minute ventilation. Am J Physiol Heart Circ Physiol. 2014;307(3):H437-H447.

Auteurs

Wener Lv (W)

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Conor D Barrett (CD)

Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts, USA.

Tatsuya Arai (T)

Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Aneesh Bapat (A)

Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts, USA.
Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA.

Antonis A Armoundas (AA)

Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA.

Richard J Cohen (RJ)

Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Kichang Lee (K)

Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts, USA.
Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA.
Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH