Ambient air pollution and the development of overweight and obesity in children: a large longitudinal study.
Adolescent
Air Pollution
/ adverse effects
Body Mass Index
Child
Child, Preschool
Environmental Exposure
/ adverse effects
Female
Humans
Longitudinal Studies
Male
Nitrogen Dioxide
Overweight
/ chemically induced
Particulate Matter
Pediatric Obesity
/ chemically induced
Proportional Hazards Models
Spain
Journal
International journal of obesity (2005)
ISSN: 1476-5497
Titre abrégé: Int J Obes (Lond)
Pays: England
ID NLM: 101256108
Informations de publication
Date de publication:
05 2021
05 2021
Historique:
received:
23
07
2020
accepted:
01
02
2021
revised:
22
12
2020
pubmed:
26
2
2021
medline:
24
12
2021
entrez:
25
2
2021
Statut:
ppublish
Résumé
Ambient air pollution may play a role in childhood obesity development, but evidence is scarce, and the modifying role of socioeconomic status (SES) is unclear. We aimed to examine the association between exposure to air pollution during early childhood and subsequent risk of developing overweight and obesity, and to evaluate whether SES is a modifier of this association. This longitudinal study included 416,955 children identified as normal weight between 2-5 years old and registered in an electronic primary healthcare record between 2006 and 2016 in Catalonia (Spain). Children were followed-up until they developed overweight or obesity, reached 15 years of age, died, transferred out, or end of study period (31/12/2018). Overweight and obesity were defined following the WHO reference obtained from height and weight measures. We estimated annual residential census levels of nitrogen dioxide (NO A total of 142,590 (34.2%) children developed overweight or obesity. Increased exposure to NO This study suggests that early life exposure to air pollution may be associated with a small increase in the risk of developing overweight and obesity in childhood, and that this association may be exacerbated in the most deprived areas. Even these small associations are of potential global health importance because air pollution exposure is widespread and the long-term health consequences of childhood obesity are clear.
Sections du résumé
BACKGROUND
Ambient air pollution may play a role in childhood obesity development, but evidence is scarce, and the modifying role of socioeconomic status (SES) is unclear. We aimed to examine the association between exposure to air pollution during early childhood and subsequent risk of developing overweight and obesity, and to evaluate whether SES is a modifier of this association.
METHODS
This longitudinal study included 416,955 children identified as normal weight between 2-5 years old and registered in an electronic primary healthcare record between 2006 and 2016 in Catalonia (Spain). Children were followed-up until they developed overweight or obesity, reached 15 years of age, died, transferred out, or end of study period (31/12/2018). Overweight and obesity were defined following the WHO reference obtained from height and weight measures. We estimated annual residential census levels of nitrogen dioxide (NO
RESULTS
A total of 142,590 (34.2%) children developed overweight or obesity. Increased exposure to NO
CONCLUSIONS
This study suggests that early life exposure to air pollution may be associated with a small increase in the risk of developing overweight and obesity in childhood, and that this association may be exacerbated in the most deprived areas. Even these small associations are of potential global health importance because air pollution exposure is widespread and the long-term health consequences of childhood obesity are clear.
Identifiants
pubmed: 33627774
doi: 10.1038/s41366-021-00783-9
pii: 10.1038/s41366-021-00783-9
doi:
Substances chimiques
Particulate Matter
0
Nitrogen Dioxide
S7G510RUBH
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1124-1132Références
Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017;389:1907–18.
pubmed: 28408086
pmcid: 5439030
doi: 10.1016/S0140-6736(17)30505-6
Kampa M, Castanas E. Human health effects of air pollution. Environ Pollut. 2008;151:362–7.
pubmed: 17646040
doi: 10.1016/j.envpol.2007.06.012
Kim KH, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter. Environ Int. 2015;74:136–43.
pubmed: 25454230
doi: 10.1016/j.envint.2014.10.005
Furlong MA, Klimentidis YC. Associations of air pollution with obesity and body fat percentage, and modification by polygenic risk score for BMI in the UK Biobank. Environ Res. 2020; 185. https://doi.org/10.1016/j.envres.2020.109364 .
Wang Z, Zhao L, Huang Q, Hong A, Yu C, Xiao Q, et al. Traffic-related environmental factors and childhood obesity: a systematic review and meta-analysis. Obes Rev. 2020; obr.12995.
Sun Q, Yue P, Deiuliis JA, Lumeng CN, Kampfrath T, Mikolaj MB, et al. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation. 2009;119:538–46.
pubmed: 19153269
doi: 10.1161/CIRCULATIONAHA.108.799015
Xu X, Yavar Z, Verdin M, Ying Z, Mihai G, Kampfrath T, et al. Effect of early particulate air pollution exposure on obesity in mice: role of p47phox. Arterioscler Thromb Vasc Biol. 2010;30:2518–27.
pubmed: 20864666
pmcid: 3065931
doi: 10.1161/ATVBAHA.110.215350
Bolton JL, Smith SH, Huff NC, Gilmour MI, Foster WM, Auten RL, et al. Prenatal air pollution exposure induces neuroinflammation and predisposes offspring to weight gain in adulthood in a sex-specific manner. FASEB J. 2012;26:4743–54.
pubmed: 22815382
doi: 10.1096/fj.12-210989
Chen Z, Herting MM, Chatzi L, Belcher BR, Alderete TL, McConnell R, et al. Regional and traffic-related air pollutants are associated with higher consumption of fast food and trans fat among adolescents. Am J Clin Nutr. 2019;109:99–108.
pubmed: 30596809
doi: 10.1093/ajcn/nqy232
Jerrett M, McConnell R, Wolch J, Chang R, Lam C, Dunton G, et al. Traffic-related air pollution and obesity formation in children: a longitudinal, multilevel analysis. Environ Heal. 2014;13:49.
doi: 10.1186/1476-069X-13-49
Dong G-H, Wang J, Zeng X-W, Chen L, Qin X-D, Zhou Y, et al. Interactions between air pollution and obesity on blood pressure and hypertension in Chinese children. Epidemiology. 2015;26:740–7.
pubmed: 26133026
doi: 10.1097/EDE.0000000000000336
de Bont J, Casas M, Barrera-Gómez J, Cirach M, Rivas I, Valvi D, et al. Ambient air pollution and overweight and obesity in school-aged children in Barcelona, Spain. Environ Int. 2019;125:58–64.
pubmed: 30703612
pmcid: 6380992
doi: 10.1016/j.envint.2019.01.048
McConnell R, Shen E, Gilliland FD, Jerrett M, Wolch J, Chang CC, et al. A longitudinal cohort study of body mass index and childhood exposure to secondhand tobacco smoke and air pollution: the Southern California Children’s Health Study. Environ Health Perspect. 2015;123:360–6.
pubmed: 25389275
doi: 10.1289/ehp.1307031
Kim JS, Alderete TL, Chen Z, Lurmann F, Rappaport E, Habre R, et al. Longitudinal associations of in utero and early life near-roadway air pollution with trajectories of childhood body mass index. Environ Heal. 2018;17:64.
doi: 10.1186/s12940-018-0409-7
Bloemsma LD, Wijga AH, Klompmaker JO, Janssen NAH, Smit HA, Koppelman GH, et al. The associations of air pollution, traffic noise and green space with overweight throughout childhood: the PIAMA birth cohort study. Environ Res. 2019;169:348–56.
pubmed: 30504077
doi: 10.1016/j.envres.2018.11.026
An R, Ji M, Yan H, Guan C. Impact of ambient air pollution on obesity: a systematic review. Int J Obes. 2018;42:1112–26.
doi: 10.1038/s41366-018-0089-y
Fioravanti S, Cesaroni G, Badaloni C, Michelozzi P, Forastiere F, Porta D. Traffic-related air pollution and childhood obesity in an Italian birth cohort. Environ Res. 2018;160:479–86.
pubmed: 29078141
doi: 10.1016/j.envres.2017.10.003
Cunningham SA, Kramer MR, Narayan KMV. Incidence of childhood obesity in the United States. N Engl J Med. 2014;3705370:403–11.
doi: 10.1056/NEJMoa1309753
de Bont J, Díaz Y, Casas M, García-Gil M, Vrijheid M, Duarte-Salles T. Time trends and sociodemographic factors associated with overweight and obesity in children and adolescents in Spain. JAMA Netw Open. 2020;3:e201171.
pubmed: 32186743
pmcid: 7081120
doi: 10.1001/jamanetworkopen.2020.1171
Moreno LA, Pigeot I, Ahrens W. Epidemiology of obesity in children and adolescents. Springer New York: New York, NY, 2011. https://doi.org/10.1007/978-1-4419-6039-9 .
Temam S, Burte E, Adam M, Antó JM, Basagaña X, Bousquet J, et al. Socioeconomic position and outdoor nitrogen dioxide (NO 2) exposure in Western Europe: a multi-city analysis. Environ Int. 2017;101:117–24.
pubmed: 28159394
doi: 10.1016/j.envint.2016.12.026
Robinson O, Tamayo I, de Castro M, Valentin A, Giorgis-Allemand L, Krog NH, et al. The urban exposome during pregnancy and its socioeconomic determinants. Environ Health Perspect. 2018;126:077005.
pubmed: 30024382
pmcid: 6108870
doi: 10.1289/EHP2862
Hajat A, Hsia C, O’Neill MS. Socioeconomic disparities and air pollution exposure: a global review. Curr. Environ. Heal. Reports. 2015;2:440–50.
doi: 10.1007/s40572-015-0069-5
Forastiere F, Stafoggia M, Tasco C, Picciotto S, Agabiti N, Cesaroni G, et al. Socioeconomic status, particulate air pollution, and daily mortality: differential exposure or differential susceptibility. Am J Ind Med. 2007;50:208–16.
pubmed: 16847936
doi: 10.1002/ajim.20368
Bolíbar B, Fina Avilés F, Morros R, Garcia-Gil M, del M, Hermosilla E, et al. [SIDIAP database: electronic clinical records in primary care as a source of information for epidemiologic research]. Med Clin (Barc). 2012;138:617–21.
doi: 10.1016/j.medcli.2012.01.020
García-Gil MDM, Hermosilla E, Prieto-Alhambra D, Fina F, Rosell M, Ramos R, et al. Construction and validation of a scoring system for the selection of high-quality data in a Spanish population primary care database (SIDIAP). Inform Prim Care. 2011;19:135–45.
WHO. WHO child growth standards based on length/height, weight and age. Acta Paediatr. 2006;Suppl 450:76–85.
de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660–7.
pubmed: 18026621
pmcid: 2636412
doi: 10.2471/BLT.07.043497
Generalitat de Catalunya. Protocol d’activitats preventives i de promoció de la salut a l’edat pediàtrica. Direcció General de Salut Pública, 2008. https://doi.org/10.1017/CBO9781107415324.004 .
Yang S, Hutcheon JA. Identifying outliers and implausible values in growth trajectory data. Ann Epidemiol. 2016;26:77–80.e2.
pubmed: 26590476
doi: 10.1016/j.annepidem.2015.10.002
WHO. Physical status: the use and interpretation of anthropometry. Geneva, 1995. http://apps.who.int/iris/bitstream/10665/37003/1/WHO_TRS_854.pdf . Accessed 18 Apr 2017.
Eeftens M, Beelen R, de Hoogh K, Bellander T, Cesaroni G, Cirach M, et al. Development of land use regression models for PM
pubmed: 22963366
doi: 10.1021/es301948k
Beelen R, Hoek G, Vienneau D, Eeftens M, Dimakopoulou K, Pedeli X, et al. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe—The ESCAPE project. Atmos Environ. 2013;72:10–23.
doi: 10.1016/j.atmosenv.2013.02.037
Nieuwenhuijsen MJ, Gascon M, Martinez D, Ponjoan A, Blanch J, Garcia-Gil MDM, et al. Air pollution, noise, blue space, and green space and premature mortality in Barcelona: a mega cohort. Int J Environ Res Public Health. 2018;15:2405.
pmcid: 6265844
doi: 10.3390/ijerph15112405
Duque I, Domínguez-Berjón MF, Cebrecos A, Prieto-Salceda MD, Esnaola S, Calvo Sánchez M, et al. Deprivation index by enumeration district in Spain, 2011. Gac Sanit. 2020. https://doi.org/10.1016/j.gaceta.2019.10.008 .
Duarte-Salles T, Méndez-Boo L, Díaz Y, Hermosilla E, Aragón M, Fina F. et al. Linkage of mother and child pairs in the information system for research in primary care (SIDIAP) in Catalonia. Pharmacoepidemiol Drug Saf. 2018. https://doi.org/10.1002/pds.4629 .
CREAF. Geographic information system: MCSC, 4th edition (vectorial). 2009. https://www.creaf.uab.es/mcsc/usa/poligons4.htm . Accessed 11 Jul 2019.
Harrell FE. Regression modeling strategies, with applications to linear models, survival analysis and logistic regression. Springer: New York, NY, 2001. http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/RmS . Accessed 22 May 2020.
Orsini N, Greenland S. A procedure to tabulate and plot results after flexible modeling of a quantitative covariate. Stata J. 2011;11:1–29.
doi: 10.1177/1536867X1101100101
Kleinbaum DG, Klein M. Survival analysis: a self-learning text. 3rd ed. Springer, New York, 2012. https://doi.org/10.1007/978-1-4419-6646-9_1 .
James P, Banay RF, Hart JE, Laden F. A Review of the health benefits of greenness. Curr Epidemiol Reports. 2015;2:218–218.
doi: 10.1007/s40471-015-0044-6
Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Peteresen I, et al. The Reporting of studies conducted using observational routinely-collected health data (RECORD) statement. PLoS Med. 2015; 12. https://doi.org/10.1371/journal.pmed.1001885 .
Li N, Georas S, Alexis N, Fritz P, Xia T, Williams MA, et al. A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J Allergy Clin Immunol. 2016;138:386–96.
pubmed: 27130856
pmcid: 4976002
doi: 10.1016/j.jaci.2016.02.023
Cyrys J, Eeftens M, Heinrich J, Ampe C, Armengaud A, Beelen R, et al. Variation of NO2 and NOx concentrations between and within 36 European study areas: results from the ESCAPE study. Atmos Environ. 2012;62:374–90.
doi: 10.1016/j.atmosenv.2012.07.080
Eeftens M, Tsai MY, Ampe C, Anwander B, Beelen R, Bellander T, et al. Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2—Results of the ESCAPE project. Atmos Environ. 2012;62:303–17.
doi: 10.1016/j.atmosenv.2012.08.038
Janssen NAH, Hoek G, Simic-Lawson M, Fischer P, van Bree L, Brink H Ten, et al. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with pm10 and pm2.5. Environ Health Perspect. 2011;119:1691–9.
pubmed: 21810552
pmcid: 3261976
doi: 10.1289/ehp.1003369
O’Neill MS, Jerrett M, Kawachi I, Levy JI, Cohen AJ, Gouveia N, et al. Health, wealth, and air pollution: advancing theory and methods. Environ Health Perspect. 2003;111:1861–70.
pubmed: 14644658
pmcid: 1241758
doi: 10.1289/ehp.6334
Diez Roux AV, Mair C. Neighborhoods and health. Ann N. Y. Acad Sci. 2010;1186:125–45.
pubmed: 20201871
doi: 10.1111/j.1749-6632.2009.05333.x
Chi GC, Hajat A, Bird CE, Cullen MR, Griffin BA, Miller KA, et al. Individual and neighborhood socioeconomic status and the association between air pollution and cardiovascular disease. Environ Health Perspect. 2016;124:1840–7.
pubmed: 27138533
pmcid: 5132637
doi: 10.1289/EHP199
Haberzettl P, O’Toole TE, Bhatnagar A, Conklin DJ. Exposure to fine particulate air pollution causes vascular insulin resistance by inducing pulmonary oxidative stress. Environ Health Perspect. 2016;124:1830–9.
pubmed: 27128347
pmcid: 5132639
doi: 10.1289/EHP212
Roberts JD, Voss JD, Knight B. The association of ambient air pollution and physical inactivity in the United States. PLoS ONE. 2014;9:e90143.
pubmed: 24598907
pmcid: 3943902
doi: 10.1371/journal.pone.0090143
An R, Zhang S, Ji M, Guan C. Impact of ambient air pollution on physical activity among adults: a systematic review and meta-analysis. Perspect Public Health. 2018;138:111–21.
pubmed: 28829249
doi: 10.1177/1757913917726567
An R, Shen J, Ying B, Tainio M, Andersen ZJ, de Nazelle A. Impact of ambient air pollution on physical activity and sedentary behavior in China: a systematic review. Environ Res. 2019;176:108545.
pubmed: 31280030
doi: 10.1016/j.envres.2019.108545
Nieuwenhuijsen MJ. Exposure assessment in environmental epidemiology. 2nd ed. Oxford University Press, Oxford, 2015. https://doi.org/10.1093/med/9780199378784.001.0001 .
Eeftens M, Beelen R, Fischer P, Brunekreef B, Meliefste K, Hoek G. Stability of measured and modelled spatial contrasts in NO2 over time. Occup Environ Med. 2011;68:765–70.
pubmed: 21285243
doi: 10.1136/oem.2010.061135
Vrijheid M, Fossati S, Maitre L, Márquez S, Roumeliotaki T, Agier L, et al. Early-life environmental exposures and childhood obesity: an exposome-wide approach. Environ Health Perspect. 2020;128:1–14.
doi: 10.1289/EHP5975
Donaire-Gonzalez D, Curto A, Valentín A, Andrusaityte S, Basagaña X, Casas M, et al. Personal assessment of the external exposome during pregnancy and childhood in Europe. Environ Res. 2019. https://doi.org/10.1016/j.envres.2019.04.015 .