Repair of full-thickness articular cartilage defects using IEIK13 self-assembling peptide hydrogel in a non-human primate model.
Animals
Biomarkers
Cartilage Diseases
/ diagnostic imaging
Cartilage, Articular
/ pathology
Cell Differentiation
Chondrocytes
/ cytology
Chondrogenesis
Disease Models, Animal
Gene Expression
Guided Tissue Regeneration
Hydrogels
Imaging, Three-Dimensional
Immunohistochemistry
Macaca fascicularis
Osteoarthritis
/ diagnostic imaging
Peptides
/ administration & dosage
Tissue Engineering
Tissue Scaffolds
X-Ray Microtomography
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
25 02 2021
25 02 2021
Historique:
received:
28
09
2020
accepted:
28
01
2021
entrez:
26
2
2021
pubmed:
27
2
2021
medline:
15
12
2021
Statut:
epublish
Résumé
Articular cartilage is built by chondrocytes which become less active with age. This declining function of the chondrocytes, together with the avascular nature of the cartilage, impedes the spontaneous healing of chondral injuries. These lesions can progress to more serious degenerative articular conditions as in the case of osteoarthritis. As no efficient cure for cartilage lesions exist yet, cartilage tissue engineering has emerged as a promising method aiming at repairing joint defects and restoring articular function. In the present work, we investigated if a new self-assembling peptide (referred as IEIK13), combined with articular chondrocytes treated with a chondrogenic cocktail (BMP-2, insulin and T3, designated BIT) could be efficient to restore full-thickness cartilage defects induced in the femoral condyles of a non-human primate model, the cynomolgus monkey. First, in vitro molecular studies indicated that IEIK13 was efficient to support production of cartilage by monkey articular chondrocytes treated with BIT. In vivo, cartilage implant integration was monitored non-invasively by contrast-enhanced micro-computed tomography, and then by post-mortem histological analysis and immunohistochemical staining of the condyles collected 3 months post-implantation. Our results revealed that the full-thickness cartilage injuries treated with either IEIK13 implants loaded with or devoid of chondrocytes showed similar cartilage-characteristic regeneration. This pilot study demonstrates that IEIK13 can be used as a valuable scaffold to support the in vitro activity of articular chondrocytes and the repair of articular cartilage defects, when implanted alone or with chondrocytes.
Identifiants
pubmed: 33633122
doi: 10.1038/s41598-021-83208-x
pii: 10.1038/s41598-021-83208-x
pmc: PMC7907267
doi:
Substances chimiques
Biomarkers
0
Hydrogels
0
Peptides
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4560Références
Osteoarthritis Cartilage. 2017 Apr;25(4):581-588
pubmed: 27789340
Acta Radiol. 2005 Dec;46(8):875-80
pubmed: 16392613
Nat Commun. 2019 May 14;10(1):2156
pubmed: 31089136
J Orthop Res. 2007 Jul;25(7):913-25
pubmed: 17405160
Adv Exp Med Biol. 2017;1030:155-166
pubmed: 29081053
Growth Factors. 2008 Aug;26(4):201-11
pubmed: 18720162
Am J Phys Anthropol. 2013 Jan;150(1):76-86
pubmed: 23124531
Osteoarthritis Cartilage. 2008 Sep;16(9):1011-7
pubmed: 18342549
BMC Mol Biol. 2008 Jan 29;9:17
pubmed: 18226276
Tissue Eng Part C Methods. 2012 Feb;18(2):104-12
pubmed: 21933021
Neoplasia. 2000 Jan-Apr;2(1-2):62-70
pubmed: 10933069
Osteoarthritis Cartilage. 2014 Mar;22(3):363-88
pubmed: 24462672
Am J Sports Med. 2019 Aug;47(10):2348-2359
pubmed: 31265317
J Biol Chem. 2013 Oct 25;288(43):30802-14
pubmed: 24014021
J Orthop Trauma. 2006 Nov-Dec;20(10):739-44
pubmed: 17106388
Osteoarthritis Cartilage. 2006 Jan;14(1):52-62
pubmed: 16242360
Laryngoscope. 2013 Dec;123(12):2986-92
pubmed: 23907933
Tissue Eng Part A. 2013 Sep;19(17-18):1909-18
pubmed: 23596981
Cell Tissue Bank. 2010 May;11(2):209-15
pubmed: 20390360
Am J Sports Med. 2004 Sep;32(6):1440-50
pubmed: 15310569
Osteoarthritis Cartilage. 2004 Mar;12(3):191-200
pubmed: 14972336
Stem Cells Int. 2019 Jun 20;2019:2186728
pubmed: 31320905
J Orthop Res. 1991 May;9(3):330-40
pubmed: 2010837
Nature. 1977 Jun 9;267(5611):531-2
pubmed: 559947
Biochim Biophys Acta. 2014 Aug;1840(8):2414-40
pubmed: 24608030
Osteoarthritis Cartilage. 2007 Dec;15(12):1397-402
pubmed: 17604187
J Biol Chem. 2007 Jul 13;282(28):20407-15
pubmed: 17493933
PLoS One. 2019 May 20;14(5):e0217183
pubmed: 31107916
Am J Sports Med. 2009 Oct;37(10):2053-63
pubmed: 19251676
Eur Cell Mater. 2008 Sep 03;16:26-39
pubmed: 18770504
Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6728-33
pubmed: 10841570
J Pept Sci. 2017 Feb;23(2):148-154
pubmed: 27990715
J Bone Joint Surg Br. 2004 Mar;86(2):286-95
pubmed: 15046449
Mol Cell Biol. 2009 Aug;29(15):4262-73
pubmed: 19470758
PLoS One. 2016 Sep 01;11(9):e0161479
pubmed: 27584727
Sports Health. 2009 Nov;1(6):461-8
pubmed: 23015907
Osteoarthritis Cartilage. 2010 Dec;18(12):1608-19
pubmed: 20851201
FEBS Lett. 2014 Oct 16;588(20):3677-84
pubmed: 25150168
Theranostics. 2018 Oct 5;8(18):5039-5058
pubmed: 30429885
Clin Geriatr Med. 2010 Aug;26(3):355-69
pubmed: 20699159
Osteoarthritis Cartilage. 2001 Feb;9(2):112-8
pubmed: 11237658
Int Immunopharmacol. 2013 Jul;16(3):399-408
pubmed: 23499511
J Dent Res. 2008 Jul;87(7):606-16
pubmed: 18573978
Skeletal Radiol. 2011 Sep;40(9):1197-222
pubmed: 21847750
Acta Orthop. 2015 Feb;86(1):119-26
pubmed: 25175660
J Biomed Mater Res A. 2019 Apr;107(4):893-903
pubmed: 30650239
Biorheology. 2008;45(3-4):355-64
pubmed: 18836236
BMJ Open Sport Exerc Med. 2016 Sep 26;2(1):e000153
pubmed: 27900195