On the ridge of instability in ferrofluidic Couette flow via alternating magnetic field.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
25 Feb 2021
Historique:
received: 31 12 2020
accepted: 10 02 2021
entrez: 26 2 2021
pubmed: 27 2 2021
medline: 27 2 2021
Statut: epublish

Résumé

There is a huge number of natural and industrial flows, which are subjected to time-dependent boundary conditions. The flow of a magnetic fluid under the influence of temporal modulations is such an example. Here, we perform numerical simulations of ferrofluidic Couette flow subject to time-periodic modulation (with frequency [Formula: see text]) in a spatially homogeneous magnetic field and report how such a modulation can lead to a significant Reynolds number Re enhancement. Consider a modified Niklas approximation we explain the relation between modulation amplitude, driving frequency and stabilization effect. From this, we describe the system response around the primary instability to be sensitive/critical by an alternating field. We detected that such an alternating field provides an easy and in particular accurate controllable key parameter to trigger the system to change from subcritical to supercritical and vice versa. Our findings provide a framework to study other types of magnetic flows driven by time-dependent forcing.

Identifiants

pubmed: 33633249
doi: 10.1038/s41598-021-84175-z
pii: 10.1038/s41598-021-84175-z
pmc: PMC7907118
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4705

Références

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jul;88(1):013003
pubmed: 23944545
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Dec;64(6 Pt 1):061405
pubmed: 11736183
Phys Rev A Gen Phys. 1989 Jan 15;39(2):745-762
pubmed: 9901302
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 2):016321
pubmed: 20866739
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 2):026314
pubmed: 19792256
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066314
pubmed: 23005213
Phys Rev Lett. 2002 Jul 15;89(3):037202
pubmed: 12144415

Auteurs

Sebastian Altmeyer (S)

Castelldefels School of Telecom and Aerospace Engineering, Universitat Politècnica de Catalunya, 08034, Barcelona, Spain. sebastian.andreas.altmeyer@upc.edu.

Classifications MeSH