Sarcomere length of the vastus intermedius with the knee joint angle change.
cadaver
electron microscope
force-length relation
quadriceps femoris
Journal
Physiological reports
ISSN: 2051-817X
Titre abrégé: Physiol Rep
Pays: United States
ID NLM: 101607800
Informations de publication
Date de publication:
03 2021
03 2021
Historique:
received:
04
11
2020
revised:
21
01
2021
accepted:
01
02
2021
entrez:
2
3
2021
pubmed:
3
3
2021
medline:
21
12
2021
Statut:
ppublish
Résumé
The force-length relation of the skeletal muscles is an important factor influencing the joint torque at a given joint angle. We aimed to clarify the relationship between the resting sarcomere length and knee joint angle in the vastus intermedius (VI) and to compare it with that of the vastus lateralis (VL). The left and right legs were fixed at knee joint angles of 0° and 90°, respectively, in seven cadavers (age at the time of death: 70-91 years). Muscle tissues were dissected by necropsy of the VL and the VI, and electron microscopy images were obtained to calculate the sarcomere length. At knee joint angles of 0° and 90°, the VL sarcomere length was 2.28 ± 0.49 μm and 2.30 ± 0.48 μm, respectively, and the VI sarcomere length was 2.19 ± 0.35 μm and 2.46 ± 0.53 μm, respectively, with a significant difference between the two (p = 0.028). The magnitude of sarcomere length changes with knee joint angle changes was significantly greater for the VI (0.27 ± 0.20 μm) than for the VL (0.02 ± 0.09 μm) (p = 0.009). Thus, knee joint angle changes may affect the passive and active tension produced by the VI more than those produced by the VL.
Identifiants
pubmed: 33650805
doi: 10.14814/phy2.14771
pmc: PMC7923570
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e14771Informations de copyright
© 2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.
Références
Nature. 2008 Aug 7;454(7205):784-8
pubmed: 18600262
Surg Radiol Anat. 2011 May;33(4):365-8
pubmed: 20632174
Pflugers Arch. 1990 Apr;416(1-2):113-9
pubmed: 2352828
Scand J Med Sci Sports. 2018 Mar;28(3):1018-1026
pubmed: 29164685
Med Sci Sports Exerc. 2007 Mar;39(3):541-7
pubmed: 17473781
Clin Biomech (Bristol, Avon). 2015 Jan;30(1):22-7
pubmed: 25483294
Front Physiol. 2017 Dec 07;8:1015
pubmed: 29270135
Med Sci Sports Exerc. 2014 Aug;46(8):1525-37
pubmed: 24504427
J Exp Biol. 2014 Feb 1;217(Pt 3):376-81
pubmed: 24477610
J Biomech. 2018 Jul 25;76:173-180
pubmed: 29941208
J Exp Biol. 2020 Mar 25;223(Pt 6):
pubmed: 32098882
Clin Orthop Relat Res. 2009 Apr;467(4):1074-82
pubmed: 18972175
J Appl Physiol (1985). 1999 May;86(5):1445-57
pubmed: 10233103
J Electromyogr Kinesiol. 2009 Aug;19(4):e280-9
pubmed: 18653357
Muscle Nerve. 2013 Aug;48(2):286-92
pubmed: 23813625
Cell Biol Toxicol. 2018 Apr;34(2):93-107
pubmed: 28656345
J Electromyogr Kinesiol. 2014 Apr;24(2):214-20
pubmed: 24485560
J Appl Physiol (1985). 2018 Sep 13;:
pubmed: 30212307
J Appl Physiol (1985). 2005 Jun;98(6):2278-86
pubmed: 15705722
J Biomech. 2016 Dec 8;49(16):4164-4167
pubmed: 27866676
Ann Anat. 2002 May;184(3):267-9
pubmed: 12061344
Front Physiol. 2016 May 25;7:187
pubmed: 27252660
J Physiol. 1966 May;184(1):170-92
pubmed: 5921536
Anat Rec (Hoboken). 2010 Nov;293(11):1913-9
pubmed: 20818614
Med Sci Sports Exerc. 2008 Jan;40(1):88-95
pubmed: 18091018
Front Physiol. 2014 Sep 29;5:375
pubmed: 25324783
Br J Sports Med. 2004 Jun;38(3):324-30
pubmed: 15155437
Muscle Nerve. 2016 May;53(5):797-802
pubmed: 26355494
J Anat. 1988 Oct;160:79-88
pubmed: 3253264
PLoS One. 2015 Oct 21;10(10):e0141146
pubmed: 26488742