Multimodal FDG-PET and EEG assessment improves diagnosis and prognostication of disorders of consciousness.
Cognitive-motor dissociation
Diagnosis
Disorders of consciousness
Electroencephalography
Positron emission tomography
Journal
NeuroImage. Clinical
ISSN: 2213-1582
Titre abrégé: Neuroimage Clin
Pays: Netherlands
ID NLM: 101597070
Informations de publication
Date de publication:
2021
2021
Historique:
received:
10
10
2020
revised:
05
02
2021
accepted:
11
02
2021
pubmed:
3
3
2021
medline:
31
7
2021
entrez:
2
3
2021
Statut:
ppublish
Résumé
Functional brain-imaging techniques have revealed that clinical examination of disorders of consciousness (DoC) can underestimate the conscious level of patients. FDG-PET metabolic index of the best preserved hemisphere (MIBH) has been reported as a promising measure of consciousness but has never been externally validated and compared with other brain-imaging diagnostic procedures such as quantitative EEG. FDG-PET, quantitative EEG and cognitive evoked potential using an auditory oddball paradigm were performed in minimally conscious state (MCS) and vegetative state (VS) patient. We compared out-sample diagnostic and prognostic performances of PET-MIBH and EEG-based classification of conscious state to the current behavioral gold-standard, the Coma Recovery Scale - revised (CRS-R). Between January 2016 and October 2019, 52 patients were included: 21 VS and 31 MCS. PET-MIBH had an AUC of 0.821 [0.694-0.930], sensitivity of 79% [62-91] and specificity of 78% [56-93], not significantly different from EEG (p = 0.628). Their combination accurately identified almost all MCS patients with a sensitivity of 94% [79-99%] and specificity of 67% [43-85]. Multimodal assessment also identified VS patients with neural correlate of consciousness (4/7 (57%) vs. 1/14 (7%), p = 0.025) and patients with 6-month recovery of command-following (9/24 (38%) vs. 0/16 (0%), p = 0.006), outperforming each technique taken in isolation. FDG-PET MIBH is an accurate and robust procedure across sites to diagnose MCS. Its combination with EEG-based classification of conscious state not only optimizes diagnostic performances but also allows to detect covert cognition and to predict 6-month command-following recovery demonstrating the added value of multimodal assessment of DoC.
Identifiants
pubmed: 33652375
pii: S2213-1582(21)00045-0
doi: 10.1016/j.nicl.2021.102601
pmc: PMC7921007
pii:
doi:
Substances chimiques
Fluorodeoxyglucose F18
0Z5B2CJX4D
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
102601Informations de copyright
Copyright © 2021. Published by Elsevier Inc.