Formation of contractile 3D bovine muscle tissue for construction of millimetre-thick cultured steak.
Journal
NPJ science of food
ISSN: 2396-8370
Titre abrégé: NPJ Sci Food
Pays: England
ID NLM: 101739627
Informations de publication
Date de publication:
02 Mar 2021
02 Mar 2021
Historique:
received:
03
08
2020
accepted:
21
01
2021
entrez:
3
3
2021
pubmed:
4
3
2021
medline:
4
3
2021
Statut:
epublish
Résumé
Owing to the increase in the global demand of meat, cultured meat technology is being developed to circumvent a shortage of meat in the future. However, methods for construction of millimetre-thick bovine muscle tissues with highly aligned myotubes have not yet been established. Here, we propose a culture method for constructing 3D-cultured bovine muscle tissue containing myotubes aligned along its long-axial direction, which contracted in response to electrical stimulation. First, we optimised the composition of biomaterials used in the construction and the electrical stimulation applied to the tissue during culture. Subsequently, we fabricated millimetre-thick bovine muscle tissues containing highly aligned myotubes by accumulating bovine myoblast-laden hydrogel modules. The microbial content of the bovine muscle tissue cultured for 14 days was below the detection limit, indicating that the muscle tissues were sterile, unlike commercial meat. Therefore, the proposed construction method for bovine muscle tissues will be useful for the production of clean cultured steak meat simulating real meat.
Identifiants
pubmed: 33654079
doi: 10.1038/s41538-021-00090-7
pii: 10.1038/s41538-021-00090-7
pmc: PMC7925560
doi:
Types de publication
Journal Article
Langues
eng
Pagination
6Subventions
Organisme : MEXT | Japan Science and Technology Agency (JST)
ID : JPMJMI18CE
Références
Elife. 2015 Jan 09;4:e04885
pubmed: 25575180
Biochem Biophys Res Commun. 1985 Jul 16;130(1):440-6
pubmed: 4026839
Nature. 2020 Aug;584(7822):535-546
pubmed: 32848221
Cytotechnology. 2018 Apr;70(2):503-512
pubmed: 28470539
Bioengineering (Basel). 2017 Jun 15;4(2):
pubmed: 28952535
PLoS One. 2012;7(4):e36173
pubmed: 22558372
Biomaterials. 2013 Dec;34(37):9413-9
pubmed: 24041425
Cytotechnology. 2020 Feb;72(1):111-120
pubmed: 31884572
Lab Chip. 2012 Sep 21;12(18):3491-503
pubmed: 22847280
NPJ Sci Food. 2019 Oct 21;3:20
pubmed: 31646181
Lab Chip. 2016 Jun 21;16(12):2295-301
pubmed: 27217209
J Biotechnol. 2001 Sep 13;91(1):63-74
pubmed: 11522363
J Relig Health. 2018 Dec;57(6):2193-2206
pubmed: 28456853
Meat Sci. 2012 Nov;92(3):297-301
pubmed: 22543115
Environ Sci Technol. 2011 Jul 15;45(14):6117-23
pubmed: 21682287
Biomaterials. 2011 May;32(14):3575-83
pubmed: 21324402
Meat Sci. 2018 May;139:213-219
pubmed: 29459297
Sci Rep. 2014 Apr 24;4:4781
pubmed: 24759171
J Sci Food Agric. 2014 Apr;94(6):1039-41
pubmed: 24214798
J Nutr. 2003 Nov;133(11 Suppl 2):3907S-3910S
pubmed: 14672289
J Artif Organs. 2009;12(2):131-7
pubmed: 19536631
Am J Physiol Cell Physiol. 2002 Nov;283(5):C1557-65
pubmed: 12372817
Biotechnol Prog. 2020 Mar;36(2):e2941
pubmed: 31756286
Foods. 2019 Oct 21;8(10):
pubmed: 31640291
J Tissue Eng Regen Med. 2011 Jul;5(7):529-39
pubmed: 21695794
Biomaterials. 2010 Sep;31(27):6981-6
pubmed: 20561677
Sci Robot. 2018 May 30;3(18):
pubmed: 33141706
Meat Sci. 2002 Nov;62(3):345-52
pubmed: 22061610