Photocatalytic oxygen evolution triggered by photon upconverted emission based on triplet-triplet annihilation.
Journal
Physical chemistry chemical physics : PCCP
ISSN: 1463-9084
Titre abrégé: Phys Chem Chem Phys
Pays: England
ID NLM: 100888160
Informations de publication
Date de publication:
11 Mar 2021
11 Mar 2021
Historique:
pubmed:
4
3
2021
medline:
4
3
2021
entrez:
3
3
2021
Statut:
ppublish
Résumé
A visible light responsive photocatalyst, Mo-doped BiVO4 (Mo:BVO), was shown to promote oxygen evolution from water in response to photon upconverted emission based on triplet-triplet annihilation (TTA) in the same aqueous dispersion. Composites comprising a triplet sensitizer (Pt(ii) octaethylporphyrin; PtOEP) and a singlet emitter (9,10-diphenylanthracene; DPA) intercalated in a layered clay compound (montmorillonite or saponite) were prepared using a facile but versatile solvothermal method. These composites were capable of converting green incident light (λ = 535 nm) to blue light (λ = 430 nm) even in air. The host layered clay as well as the co-intercalated surfactant evidently functioned as barriers against water and oxygen to prevent the quenching of the active compounds. The TTA upconversion driven photocatalytic oxygen evolution using the aqueous mixture of the dyes-clay composite and particulate photocatalysts can be a potential approach to eliminate the undesired optical losses and thus be a breakthrough for future industrial and large-scale installation in an inexpensive manner.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM