Identified lung adenocarcinoma metabolic phenotypes and their association with tumor immune microenvironment.


Journal

Cancer immunology, immunotherapy : CII
ISSN: 1432-0851
Titre abrégé: Cancer Immunol Immunother
Pays: Germany
ID NLM: 8605732

Informations de publication

Date de publication:
Oct 2021
Historique:
received: 01 08 2020
accepted: 18 02 2021
pubmed: 5 3 2021
medline: 30 9 2021
entrez: 4 3 2021
Statut: ppublish

Résumé

Lung adenocarcinoma (LUAD), a subtype of non-small cell lung cancer (NSCLC), causes high mortality around the world. Previous studies have suggested that the metabolic pattern of tumor is associated with tumor response to immunotherapy and patient's survival outcome. Yet, this relationship in LUAD is still unknown. Therefore, in this study, we identified the immune landscape in different tumor subtypes classified by metabolism-related genes expression with a large-scale dataset (tumor samples, n = 2181; normal samples, n = 419). We comprehensively correlated metabolism-related phenotypes with diverse clinicopathologic characteristics, genomic features, and immunotherapeutic efficacy in LUAD patients. And we confirmed tumors with activated lipid metabolism tend to have higher immunocytes infiltration and better response to checkpoint immunotherapy. This work highlights the connection between the metabolic pattern of tumor and tumor immune infiltration in LUAD. A scoring system based on metabolism-related gene expression is not only able to predict prognosis of patient with LUAD but also applied to pan-cancer. LUAD response to checkpoint immunotherapy can also be predicted by this scoring system. This work revealed the significant connection between metabolic pattern of tumor and tumor immune infiltration, regulating LUAD patients' response to immunotherapy.

Sections du résumé

BACKGROUND BACKGROUND
Lung adenocarcinoma (LUAD), a subtype of non-small cell lung cancer (NSCLC), causes high mortality around the world. Previous studies have suggested that the metabolic pattern of tumor is associated with tumor response to immunotherapy and patient's survival outcome. Yet, this relationship in LUAD is still unknown.
METHODS METHODS
Therefore, in this study, we identified the immune landscape in different tumor subtypes classified by metabolism-related genes expression with a large-scale dataset (tumor samples, n = 2181; normal samples, n = 419). We comprehensively correlated metabolism-related phenotypes with diverse clinicopathologic characteristics, genomic features, and immunotherapeutic efficacy in LUAD patients.
RESULTS RESULTS
And we confirmed tumors with activated lipid metabolism tend to have higher immunocytes infiltration and better response to checkpoint immunotherapy. This work highlights the connection between the metabolic pattern of tumor and tumor immune infiltration in LUAD. A scoring system based on metabolism-related gene expression is not only able to predict prognosis of patient with LUAD but also applied to pan-cancer. LUAD response to checkpoint immunotherapy can also be predicted by this scoring system.
CONCLUSIONS CONCLUSIONS
This work revealed the significant connection between metabolic pattern of tumor and tumor immune infiltration, regulating LUAD patients' response to immunotherapy.

Identifiants

pubmed: 33659999
doi: 10.1007/s00262-021-02896-6
pii: 10.1007/s00262-021-02896-6
doi:

Substances chimiques

Biomarkers, Tumor 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2835-2850

Subventions

Organisme : Anhui Provincial Natural Science Foundation
ID : 1808085QH270
Organisme : Anhui Provincial Natural Science Foundation
ID : 2008085QH428
Organisme : Fundamental Research Funds for the Central Universities
ID : WK9110000121
Organisme : National Natural Science Foundation of China
ID : 81703622
Organisme : National Natural Science Foundation of China
ID : 82073893
Organisme : Postdoctoral Research Foundation of China
ID : 2018M633002
Organisme : Hunan Provincial Natural Science Foundation of China
ID : 2018JJ3838
Organisme : Hunan Provincial Health Committee Foundation of China
ID : C2019186

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.

Références

Bade BC, Dela Cruz CS, Cancer L (2020) Epidemiology, etiology, and prevention. Clin Chest Med 41(2020):1–24
pubmed: 32008623 doi: 10.1016/j.ccm.2019.10.001
Myers DJ, Wallen JM (2020) Lung Adenocarcinoma. StatPearls Publishing, Treasure Island, FL. Available from: https://www.ncbi.nlm.nih.gov/books/NBK519578/
Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, Majem M, Fidler MJ, de Castro G, Jr., Garrido M, Lubiniecki GM, Shentu Y, Im E, Dolled-Filhart M, Garon EG (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387:1540–1550
Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhaufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crino L, Blumenschein GR Jr, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639
pubmed: 26412456 pmcid: 5705936 doi: 10.1056/NEJMoa1507643
Li J, He Y, Tan Z, Lu J, Li L, Song X, Shi F, Xie L, You S, Luo X, Li N, Li Y, Liu X, Tang M, Weng X, Yi W, Fan J, Zhou J, Qiang G, Qiu S, Wu W, Bode AM, Cao Y (2018) Wild-type IDH2 promotes the Warburg effect and tumor growth through HIF1alpha in lung cancer. Theranostics 8:4050–4061
pubmed: 30128035 pmcid: 6096397 doi: 10.7150/thno.21524
Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ, Tonc E, Schreiber RD, Pearce EJ, Pearce EL (2015) Metabolic competition in the tumor microenvironment is a driver of cancer Progression. Cell 162:1229–1241
pubmed: 26321679 pmcid: 4864363 doi: 10.1016/j.cell.2015.08.016
Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, Tsui YC, Cui G, Micevic G, Perales JC, Kleinstein SH, Abel ED, Insogna KL, Feske S, Locasale JW, Bosenberg MW, Rathmell JC, Kaech SM (2015) Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162:1217–1228
pubmed: 4567953 pmcid: 4567953 doi: 10.1016/j.cell.2015.08.012
Ramapriyan R, Caetano MS, Barsoumian HB, Mafra ACP, Zambalde EP, Menon H, Tsouko E, Welsh JW, Cortez MA (2019) Altered cancer metabolism in mechanisms of immunotherapy resistance. Pharmacol Ther 195:162–171
pubmed: 30439456 doi: 10.1016/j.pharmthera.2018.11.004
Li X, Wenes M, Romero P, Huang SC, Fendt SM, Ho PC (2019) Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol 16:425–441
pubmed: 30914826 doi: 10.1038/s41571-019-0203-7
Lim SM, Hong MH, Kim HR (2020) Immunotherapy for non-small cell lung cancer: current landscape and future perspectives. Immune Netw 20:10
doi: 10.4110/in.2020.20.e10
Raju S, Joseph R, Sehgal S (2018) Review of checkpoint immunotherapy for the management of non-small cell lung cancer. Immunotargets Ther 7:63–75
pubmed: 30105218 pmcid: 6074780 doi: 10.2147/ITT.S125070
Bradbury PA, Shepherd FA (2008) Immunotherapy for lung cancer. J Thorac Oncol 3:S164–S170
pubmed: 18520304 doi: 10.1097/JTO.0b013e318174e9a7
Hsu ML, Naidoo J (2020) Principles of immunotherapy in non-small cell lung cancer. Thorac Surg Clin 30:187–198
pubmed: 32327177 doi: 10.1016/j.thorsurg.2020.01.009
Barrueto L, Caminero F, Cash L, Makris C, Lamichhane P, Deshmukh RR (2020) Resistance to checkpoint inhibition in cancer immunotherapy. Transl Oncol 13:100738
pubmed: 32114384 pmcid: 7047187 doi: 10.1016/j.tranon.2019.12.010
Faruki H, Mayhew GM, Serody JS, Hayes DN, Perou CM, Lai-Goldman M (2017) Lung adenocarcinoma and squamous cell carcinoma gene expression subtypes demonstrate significant differences in tumor immune landscape. J Thorac Oncol 12:943–953
pubmed: 28341226 pmcid: 6557266 doi: 10.1016/j.jtho.2017.03.010
Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK, Chen WW, Barrett FG, Stransky N, Tsun ZY, Cowley GS, Barretina J, Kalaany NY, Hsu PP, Ottina K, Chan AM, Yuan B, Garraway LA, Root DE, Mino-Kenudson M, Brachtel EF, Driggers EM, Sabatini DM (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476:346–350
pubmed: 21760589 pmcid: 3353325 doi: 10.1038/nature10350
Ball GH, Hall DJ (1967) A clustering technique for summarizing multivariate data. Behav Sci 12:153–155
pubmed: 6030099 doi: 10.1002/bs.3830120210
Monti S, Tamayo P, Mesirov J, Golub T (2003) Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach Learn 52(1):91–118
doi: 10.1023/A:1023949509487
Hanzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7
pubmed: 23323831 pmcid: 3618321 doi: 10.1186/1471-2105-14-7
Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z (2017) Pan-Cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18:248–262
pubmed: 28052254 doi: 10.1016/j.celrep.2016.12.019
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:47
doi: 10.1093/nar/gkv007
Hartigan JA, Wong MA (1979) Algorithm as 136 A K-means clustering algorithm. J R Stat Soc Ser C Appl Stat 28(1):100–108
Yu G, Wang LG, Han Y, He QY (2012) Clusterprofiler: an R package for comparing biological themes among gene clusters. Omics J Integr Bio 16:284–287
doi: 10.1089/omi.2011.0118
Goeman JJ (2010) L1 penalized estimation in the Cox proportional hazards model. Biom J 52:70–84
pubmed: 19937997
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Ghasemi A, Zahediasl S (2012) Normality tests for statistical analysis: a guide for non-statisticians. Int J Endocrinol Metab 10:486–489
pubmed: 23843808 pmcid: 3693611 doi: 10.5812/ijem.3505
Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B, Liu J, Freeman GJ, Brown MA, Wucherpfennig KW, Liu XS (2018) Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med 24:1550–1558
pubmed: 30127393 pmcid: 6487502 doi: 10.1038/s41591-018-0136-1
Lu X, Jiang L, Zhang L, Zhu Y, Hu W, Wang J, Ruan X, Xu Z, Meng X, Gao J, Su X, Yan F (2019) Immune signature-based subtypes of cervical squamous cell carcinoma tightly associated with human papillomavirus type 16 expression. Mol Features Clin Outcome, Neoplasia 21:591–601
Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, Albright A, Cheng JD, Kang SP, Shankaran V, Piha-Paul SA, Yearley J, Seiwert TY, Ribas A, McClanahan TK (2017) IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127:2930–2940
pubmed: 28650338 pmcid: 5531419 doi: 10.1172/JCI91190
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57(1):289–300
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M (2011) Proc: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinfor 12:77
doi: 10.1186/1471-2105-12-77
Matthias S (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847
doi: 10.1093/bioinformatics/btw313
Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570
pubmed: 21436444 doi: 10.1126/science.1203486
Wang S, Zhang Q, Yu C, Cao Y, Zuo Y, Yang L (2020) Immune cell infiltration-based signature for prognosis and immunogenomic analysis in breast cancer. Brief Bioinform. https://doi.org/10.1093/bib/bbaa026
doi: 10.1093/bib/bbaa026 pubmed: 32866969 pmcid: 8382976
Davoli T, Uno H, Wooten EC, Elledge SJ (2017) Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science. https://doi.org/10.1126/science.aaf8399
doi: 10.1126/science.aaf8399 pubmed: 28104840 pmcid: 5592794
Datta M, Coussens LM, Nishikawa H, Hodi FS, Jain RK (2019) Reprogramming the tumor microenvironment to improve immunotherapy: emerging strategies and combination therapies. Am Soc Clin Oncol Educ Book 39:165–174
pubmed: 31099649 pmcid: 6596289 doi: 10.1200/EDBK_237987
Havel JJ, Chowell D, Chan TA (2019) The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer 19:133–150
pubmed: 30755690 pmcid: 6705396 doi: 10.1038/s41568-019-0116-x
Sokratous G, Polyzoidis S, Ashkan K (2017) Immune infiltration of tumor microenvironment following immunotherapy for glioblastoma multiforme. Hum Vaccin Immunother 13:2575–2582
pubmed: 28362548 pmcid: 5703406 doi: 10.1080/21645515.2017.1303582
Altorki NK, Markowitz GJ, Gao D, Port JL, Saxena A, Stiles B, McGraw T, Mittal V (2019) The lung microenvironment: an important regulator of tumour growth and metastasis. Nat Rev Cancer 19:9–31
pubmed: 30532012 pmcid: 6749995 doi: 10.1038/s41568-018-0081-9
Nazareth MR, Broderick L, Simpson-Abelson MR, Kelleher RJ Jr, Yokota SJ, Bankert RB (2007) Characterization of human lung tumor-associated fibroblasts and their ability to modulate the activation of tumor-associated T cells. J Immunol 178:5552–5562
pubmed: 17442937 doi: 10.4049/jimmunol.178.9.5552
Salmon H, Franciszkiewicz K, Damotte D, Dieu-Nosjean MC, Validire P, Trautmann A, Mami-Chouaib F, Donnadieu E (2012) Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Invest 122:899–910
pubmed: 22293174 pmcid: 3287213 doi: 10.1172/JCI45817
Liu F, Qin L, Liao Z, Song J, Yuan C, Liu Y, Wang Y, Xu H, Zhang Q, Pei Y, Zhang H, Pan Y, Chen X, Zhang Z, Zhang W, Zhang B (2020) Microenvironment characterization and multi-omics signatures related to prognosis and immunotherapy response of hepatocellular carcinoma. Exp Hematol Oncol 9:10
pubmed: 32509418 pmcid: 7249423 doi: 10.1186/s40164-020-00165-3
Galon J, Bruni D (2019) Approaches to treat immune hot altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 18:197–218
pubmed: 30610226 doi: 10.1038/s41573-018-0007-y
Rodallec A, Sicard G, Fanciullino R, Benzekry S, Lacarelle B, Milano G, Ciccolini J (2018) Turning cold tumors into hot tumors: harnessing the potential of tumor immunity using nanoparticles. Expert Opin Drug Metab Toxicol 14:1139–1147
pubmed: 30354685
Zhang J, Shi Z, Xu X, Yu Z, Mi J (2019) The influence of microenvironment on tumor immunotherapy. FEBS J 286:4160–4175
pubmed: 31365790 pmcid: 6899673 doi: 10.1111/febs.15028
Cascone T, McKenzie JA, Mbofung RM, Punt S, Wang Z, Xu C, Williams LJ, Wang Z, Bristow CA, Carugo A, Peoples MD, Li L, Karpinets T, Huang L, Malu S, Creasy C, Leahey SE, Chen J, Chen Y, Pelicano H, Bernatchez C, Gopal YNV, Heffernan TP, Hu J, Wang J, Amaria RN, Garraway LA, Huang P, Yang P, Wistuba SE II, Woodman J, Roszik RE, Davis MA, Davies JV, Heymach P, Hwu W. Peng (2018) Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab 27(5):977–987
pubmed: 5932208 pmcid: 5932208 doi: 10.1016/j.cmet.2018.02.024
Afonso J, Santos LL, Longatto-Filho A, Baltazar F (2020) Competitive glucose metabolism as a target to boost bladder cancer immunotherapy. Nat Rev Urol 17:77–106
pubmed: 31953517 doi: 10.1038/s41585-019-0263-6
Amobi A, Qian F, Lugade AA, Odunsi K (2017) Tryptophan catabolism and cancer immunotherapy targeting IDO mediated immune suppression. Adv Exp Med Biol 1036:129–144
pubmed: 29275469 doi: 10.1007/978-3-319-67577-0_9 pmcid: 29275469
Harel M, Ortenberg R, Varanasi SK, Mangalhara KC, Mardamshina M, Markovits E, Baruch EN, Tripple V, Arama-Chayoth M, Greenberg E, Shenoy A, Ayasun R, Knafo N, Xu S, Anafi L, Yanovich-Arad G, Barnabas GD, Ashkenazi S, Besser MJ, Schachter J, Bosenberg M, Shadel GS, Barshack I, Kaech SM, Markel G, Geiger T (2019) Proteomics of melanoma response to immunotherapy reveals mitochondrial dependence. Cell 179(1):236–250
pubmed: 31495571 pmcid: 7993352 doi: 10.1016/j.cell.2019.08.012
Li S, Xuan Y, Gao B, Sun X, Miao S, Lu T, Wang Y, Jiao W (2018) Identification of an eight-gene prognostic signature for lung adenocarcinoma. Cancer Manag Res 10:3383–3392
pubmed: 30237740 pmcid: 6138967 doi: 10.2147/CMAR.S173941
Sun S, Guo W, Wang Z, Wang X, Zhang G, Zhang H, Li R, Gao Y, Qiu B, Tan F, Gao Y, Xue Q, Gao S, He J (2020) Development and validation of an immune-related prognostic signature in lung adenocarcinoma. Cancer Med 9:5960–5975
pubmed: 32592319 pmcid: 7433810 doi: 10.1002/cam4.3240

Auteurs

Xian-Ning Wu (XN)

Department of Thoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China.

Dan Su (D)

School of Nursing, Anhui Medical University, Hefei, People's Republic of China.

Yi-De Mei (YD)

School of Life Sciences, University of Science and Technology of China (USTC), Hefei, 230027, Anhui, People's Republic of China.

Mei-Qing Xu (MQ)

Department of Thoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China.

Hao Zhang (H)

Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.

Ze-Yu Wang (ZY)

Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.

Li-Ling Li (LL)

Department of Pathology, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
Department of Pathology, Xiangya Medical School, Central South University, Changsha, People's Republic of China.

Li Peng (L)

Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, People's Republic of China.

Jun-Yi Jiang (JY)

Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.

Jia-Yi Yang (JY)

Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, People's Republic of China.

Dong-Jie Li (DJ)

Department of Clinical Pharmacology, and Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
National Clinical Research Center for Geriatric Disorders, Changsha, People's Republic of China.

Hui Cao (H)

Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, People's Republic of China.

Zhi-Wei Xia (ZW)

Department of Neurology, Hunan Aerospace Hospital, Changsha, People's Republic of China.

Wen-Jing Zeng (WJ)

Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, People's Republic of China.

Quan Cheng (Q)

Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China. chengquan@csu.edu.cn.
National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China. chengquan@csu.edu.cn.
Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, People's Republic of China. chengquan@csu.edu.cn.

Nan Zhang (N)

One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, Hei Longjiang, People's Republic of China. awekevin@onethird-lab.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH