Tectorigenin alleviates intrahepatic cholestasis by inhibiting hepatic inflammation and bile accumulation via activation of PPARγ.


Journal

British journal of pharmacology
ISSN: 1476-5381
Titre abrégé: Br J Pharmacol
Pays: England
ID NLM: 7502536

Informations de publication

Date de publication:
06 2021
Historique:
revised: 07 02 2021
received: 04 09 2020
accepted: 21 02 2021
pubmed: 5 3 2021
medline: 6 7 2021
entrez: 4 3 2021
Statut: ppublish

Résumé

Increasing evidence suggests that human cholestasis is closely associated with the accumulation and activation of hepatic macrophages. Research indicates that activation of PPARγ exerts liver protective effects in cholestatic liver disease (CLD), particularly by ameliorating inflammation and fibrosis, thus limiting disease progression. However, existing PPARγ agonists, such as troglitazone and rosiglitazone, have significant side effects that prevent their clinical application in the treatment of CLD. In this study, we found that tectorigenin alleviates intrahepatic cholestasis in mice by activating PPARγ. Wild-type mice were intragastrically administered α-naphthylisothiocyanate (ANIT) or fed a diet containing 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) to simultaneously establish an experimental model of intrahepatic cholestasis and tectorigenin intervention, followed by determination of intrahepatic cholestasis and the mechanisms involved. In addition, PPARγ-deficient mice were administered ANIT and/or tectorigenin to determine whether tectorigenin exerts its liver protective effect by activating PPARγ. Treatment with tectorigenin alleviated intrahepatic cholestasis by inhibiting the recruitment and activation of hepatic macrophages and by promoting the expression of bile transporters via activation of PPARγ. Furthermore, tectorigenin increased expression of the bile salt export pump (BSEP) through enhanced PPARγ binding to the BSEP promoter. In PPARγ-deficient mice, the hepatoprotective effect of tectorigenin during cholestasis was blocked. In conclusion, tectorigenin reduced the recruitment and activation of hepatic macrophages and enhanced the export of bile acids by activating PPARγ. Taken together, our results suggest that tectorigenin is a candidate compound for cholestasis treatment.

Sections du résumé

BACKGROUND AND PURPOSE
Increasing evidence suggests that human cholestasis is closely associated with the accumulation and activation of hepatic macrophages. Research indicates that activation of PPARγ exerts liver protective effects in cholestatic liver disease (CLD), particularly by ameliorating inflammation and fibrosis, thus limiting disease progression. However, existing PPARγ agonists, such as troglitazone and rosiglitazone, have significant side effects that prevent their clinical application in the treatment of CLD. In this study, we found that tectorigenin alleviates intrahepatic cholestasis in mice by activating PPARγ.
EXPERIMENTAL APPROACH
Wild-type mice were intragastrically administered α-naphthylisothiocyanate (ANIT) or fed a diet containing 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) to simultaneously establish an experimental model of intrahepatic cholestasis and tectorigenin intervention, followed by determination of intrahepatic cholestasis and the mechanisms involved. In addition, PPARγ-deficient mice were administered ANIT and/or tectorigenin to determine whether tectorigenin exerts its liver protective effect by activating PPARγ.
KEY RESULTS
Treatment with tectorigenin alleviated intrahepatic cholestasis by inhibiting the recruitment and activation of hepatic macrophages and by promoting the expression of bile transporters via activation of PPARγ. Furthermore, tectorigenin increased expression of the bile salt export pump (BSEP) through enhanced PPARγ binding to the BSEP promoter. In PPARγ-deficient mice, the hepatoprotective effect of tectorigenin during cholestasis was blocked.
CONCLUSION AND IMPLICATIONS
In conclusion, tectorigenin reduced the recruitment and activation of hepatic macrophages and enhanced the export of bile acids by activating PPARγ. Taken together, our results suggest that tectorigenin is a candidate compound for cholestasis treatment.

Identifiants

pubmed: 33661551
doi: 10.1111/bph.15429
doi:

Substances chimiques

Bile Acids and Salts 0
Isoflavones 0
PPAR gamma 0
tectorigenin 855130H9CO

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2443-2460

Subventions

Organisme : China Postdoctoral Science Foundation
ID : 2020M683179
Organisme : National Natural Science Foundation of China
ID : 82000824
Organisme : National Natural Science Foundation of China
ID : 82003747
Organisme : Natural Science Foundation of Tianjin City
ID : 19JCQNJC12600
Organisme : Research project of Tianjin education commission
ID : 2019KJ044

Informations de copyright

© 2021 The British Pharmacological Society.

Références

Ahmadian, M., Suh, J., Hah, N., Liddle, C., Atkins, A., Downes, M., & Evans, R. M. (2013). PPARγ signaling and metabolism: The good, the bad and the future. Nature Medicine, 19(5), 557-566. https://doi.org/10.1038/nm.3159
Alexander, S. P. H., Cidlowski, J. A., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & CGTP Collaborators. (2019). THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Nuclear hormone receptors. British Journal of Pharmacology, 176, S229-S246. https://doi.org/10.1111/bph.14750
Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & CGTP Collaborators. (2019a). THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Catalytic receptors. British Journal of Pharmacology, 176, S247-S296. https://doi.org/10.1111/bph.14751
Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & CGTP Collaborators. (2019b). THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Enzymes. British Journal of Pharmacology, 176, S297-S396. https://doi.org/10.1111/bph.14752
Alexander, S. P. H., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., & Southan, C. (2019). The concise guide to pharmacology 2019/20: Transporters. British Journal of Pharmacology, 176(Suppl 1), S397-s493.
Alexander, S. P. H., Roberts, R. E., Broughton, B. R. S., Sobey, C. G., George, C. H., Stanford, S. C., Cirino, G., Docherty, J. R., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Mangum, J., Wonnacott, S., & Ahluwalia, A. (2018). Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of pharmacology. British Journal of Pharmacology, 175(3), 407-411. https://doi.org/10.1111/bph.14112
Beuers, U., Gershwin, M., Gish, R., Invernizzi, P., Jones, D., Lindor, K., Ma, X., Mackay, I. R., Parés, A., Tanaka, A., & Vierling, J. M. (2015). Changing nomenclature for PBC: From 'cirrhosis' to 'cholangitis'. Hepatology (Baltimore, Md.), 62(5), 1620-1622.
Bolder, U., Ton-Nu, H., Schteingart, C., Frick, E., & Hofmann, A. (1997). Hepatocyte transport of bile acids and organic anions in endotoxemic rats: Impaired uptake and secretion. Gastroenterology, 112(1), 214-225. https://doi.org/10.1016/S0016-5085(97)70238-5
Bouhlel, M., Derudas, B., Rigamonti, E., Dièvart, R., Brozek, J., Haulon, S., Zawadzki, C., Jude, B., Torpier, G., Marx, N., & Staels, B. (2007). PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metabolism, 6(2), 137-143. https://doi.org/10.1016/j.cmet.2007.06.010
Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C. H., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Sobey, C. G., Stanford, S. C., Teixeira, M. M., Wonnacott, S., & Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology, 175(7), 987-993. https://doi.org/10.1111/bph.14153
Dyson, J., Hirschfield, G., Adams, D., Beuers, U., Mann, D., Lindor, K., & Jones, D. E. (2015). Novel therapeutic targets in primary biliary cirrhosis. Nature Reviews. Gastroenterology & Hepatology, 12(3), 147-158. https://doi.org/10.1038/nrgastro.2015.12
El Kasmi, K., Anderson, A., Devereaux, M., Vue, P., Zhang, W., Setchell, K., Karpen, S. J., & Sokol, R. J. (2013). Phytosterols promote liver injury and Kupffer cell activation in parenteral nutrition-associated liver disease. Science Translational Medicine, 5(206), 206ra137.
El Kasmi, K., Vue, P., Anderson, A., Devereaux, M., Ghosh, S., Balasubramaniyan, N., Fillon, S. A., Dahrenmoeller, C., Allawzi, A., Woods, C., & McKenna, S. (2018). Macrophage-derived IL-1β/NF-κB signaling mediates parenteral nutrition-associated cholestasis. Nature Communications, 9(1), 1393. https://doi.org/10.1038/s41467-018-03764-1
Feld, J., Meddings, J., & Heathcote, E. (2006). Abnormal intestinal permeability in primary biliary cirrhosis. Digestive Diseases and Sciences, 51(9), 1607-1613. https://doi.org/10.1007/s10620-006-9544-z
Fickert, P., Pollheimer, M., Beuers, U., Lackner, C., Hirschfield, G., Housset, C., Keitel, V., Schramm, C., Marschall, H. U., Karlsen, T. H., Melum, E., Kaser, A., Eksteen, B., Strazzabosco, M., Manns, M., Trauner, M., & International PSC Study Group (IPSCSG). (2014). Characterization of animal models for primary sclerosing cholangitis (PSC). Journal of Hepatology, 60(6), 1290-1303. https://doi.org/10.1016/j.jhep.2014.02.006
Fickert, P., Stöger, U., Fuchsbichler, A., Moustafa, T., Marschall, H., Weiglein, A., Tsybrovskyy, O., Jaeschke, H., Zatloukal, K., Denk, H., & Trauner, M. (2007). A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. The American Journal of Pathology, 171(2), 525-536. https://doi.org/10.2353/ajpath.2007.061133
Fiorotto, R., Scirpo, R., Trauner, M., Fabris, L., Hoque, R., Spirli, C., & Strazzabosco, M. (2011). Loss of CFTR affects biliary epithelium innate immunity and causes TLR4-NF-κB-mediated inflammatory response in mice. Gastroenterology, 141(4), 1498-1508.1508.e1491-1495
Franca, A., Carlos Melo Lima Filho, A., Guerra, M. T., Weerachayaphorn, J., Loiola dos Santos, M., Njei, B., Robert, M., Xavier Lima, C., Vieira Teixeira Vidigal, P., Banales, J. M., & Ananthanarayanan, M. (2019). Effects of endotoxin on type 3 inositol 1,4,5-trisphosphate receptor in human cholangiocytes. Hepatology (Baltimore, Md.), 69(2), 817-830.
Funk, C., Pantze, M., Jehle, L., Ponelle, C., Scheuermann, G., Lazendic, M., & Gasser, R. (2001). Troglitazone-induced intrahepatic cholestasis by an interference with the hepatobiliary export of bile acids in male and female rats. Correlation with the gender difference in troglitazone sulfate formation and the inhibition of the canalicular bile salt export pump (BSEP) by troglitazone and troglitazone sulfate. Toxicology, 167(1), 83-98. https://doi.org/10.1016/s0300-483x(01)00460-7
Funk, C., Ponelle, C., Scheuermann, G., & Pantze, M. (2001). Cholestatic potential of troglitazone as a possible factor contributing to troglitazone-induced hepatotoxicity: In vivo and in vitro interaction at the canalicular bile salt export pump (BSEP) in the rat. Molecular Pharmacology, 59(3), 627-635. https://doi.org/10.1124/mol.59.3.627
Gao, X., Shi, D., Chen, Y., Cui, J., Wang, Y., Jiang, C., & Wu, J. H. (2012). The therapeutic effects of tectorigenin on chemically induced liver fibrosis in rats and an associated metabonomic investigation. Archives of Pharmacal Research, 35(8), 1479-1493. https://doi.org/10.1007/s12272-012-0819-y
Gaul, S., Leszczynska, A., Alegre, F., Kaufmann, B., Johnson, C., Adams, L., Wree, A., Damm, G., Seehofer, D., Calvente, C. J., & Povero, D. (2021). Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis. Journal of Hepatology, 74(1), 156-167. https://doi.org/10.1016/j.jhep.2020.07.041
Halilbasic, E., Baghdasaryan, A., & Trauner, M. (2013). Nuclear receptors as drug targets in cholestatic liver diseases. Clinics in Liver Disease, 17(2), 161-189. https://doi.org/10.1016/j.cld.2012.12.001
Han, Y., Kim, H., Na, H., Nam, M., Kim, J., Kim, J., Koo, S. H., & Lee, M. O. (2017). RORα induces KLF4-mediated M2 polarization in the liver macrophages that protect against nonalcoholic steatohepatitis. Cell Reports, 20(1), 124-135. https://doi.org/10.1016/j.celrep.2017.06.017
Harada, K., & Nakanuma, Y. (2010). Biliary innate immunity: Function and modulation. Mediators of Inflammation, 2010, 1-9. https://doi.org/10.1155/2010/373878
Hirschfield, G., Mason, A., Luketic, V., Lindor, K., Gordon, S., Mayo, M., Kowdley, K. V., Vincent, C., Bodhenheimer, H. C. Jr., Parés, A., & Trauner, M. (2015). Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology, 148(4), 751-761.e758
Honda, Y., Yamagiwa, S., Matsuda, Y., Takamura, M., Ichida, T., & Aoyagi, Y. (2007). Altered expression of TLR homolog RP105 on monocytes hypersensitive to LPS in patients with primary biliary cirrhosis. Journal of Hepatology, 47(3), 404-411. https://doi.org/10.1016/j.jhep.2007.03.012
Hou, Y., Moreau, F., & Chadee, K. (2012). PPARγ is an E3 ligase that induces the degradation of NFκB/p65. Nature Communications, 3, 1300. https://doi.org/10.1038/ncomms2270
Isaacs-Ten, A., Echeandia, M., Moreno-Gonzalez, M., Brion, A., Goldson, A., Philo, M., Patterson, A. M., Parker, A., Galduroz, M., Baker, D., & Rushbrook, S. M. (2020). Intestinal microbiome-macrophage crosstalk contributes to cholestatic liver disease by promoting intestinal permeability. Hepatology (Baltimore, Md.), 72(6), 2090.
Kaimal, R., Song, X., Yan, B., King, R., & Deng, R. (2009). Differential modulation of farnesoid X receptor signaling pathway by the thiazolidinediones. The Journal of Pharmacology and Experimental Therapeutics, 330(1), 125-134. https://doi.org/10.1124/jpet.109.151233
Lee, H., Bae, E., & Kim, D. (2005). Hepatoprotective effect of tectoridin and tectorigenin on tert-butyl hyperoxide-induced liver injury. Journal of Pharmacological Sciences, 97(4), 541-544. https://doi.org/10.1254/jphs.SCZ040467
Lee, H., Choo, M., Bae, E., & Kim, D. (2003). Beta-glucuronidase inhibitor tectorigenin isolated from the flower of Pueraria thunbergiana protects carbon tetrachloride-induced liver injury. Liver International: Official Journal of the International Association for the Study of the Liver, 23(4), 221-226. https://doi.org/10.1034/j.1600-0676.2003.00830.x
Leicester, K., Olynyk, J., Brunt, E., Britton, R., & Bacon, B. (2006). Differential findings for CD14-positive hepatic monocytes/macrophages in primary biliary cirrhosis, chronic hepatitis C and nonalcoholic steatohepatitis. Liver International: Official Journal of the International Association for the Study of the Liver, 26(5), 559-565. https://doi.org/10.1111/j.1478-3231.2006.01255.x
Li, Q., Chen, L., Yan, M., Shi, X., & Zhong, M. (2015). Tectorigenin regulates adipogenic differentiation and adipocytokines secretion via PPARγ and IKK/NF-κB signaling. Pharmaceutical Biology, 53(11), 1567-1575. https://doi.org/10.3109/13880209.2014.993038
Li, Z., Chen, D., Jia, Y., Feng, Y., Wang, C., Tong, Y., Cui, R., Qu, K., Liu, C., & Zhang, J. (2019). κMethane-rich saline counteracts cholestasis-induced liver damage via regulating the TLR4/NF-B/NLRP3 Inflammasome pathway. Oxidative Medicine and Cellular Longevity, 2019, 6565283.
Lilley, E., Stanford, S., Kendall, D., Alexander, S., Cirino, G., Docherty, J., George, C. H., Insel, P. A., Izzo, A. A., Ji, Y., & Panettieri, R. A. (2020). ARRIVE 2.0 and the British Journal of pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 177(16), 3611-3616. https://doi.org/10.1111/bph.15178
Liu, Y., Ding, H., Chang, S., Lu, R., Zhong, H., Zhao, N., Lin, T. H., Bao, Y., Yap, L., Xu, W., Wang, M., Li, Y., Qin, S., Zhao, Y., Geng, X., Wang, S., Chen, E., Yu, Z., Chan, T. C., & Liu, S. (2020). Exposure to air pollution and scarlet fever resurgence in China: A six-year surveillance study. Nature Communications, 11(1), 4229. https://doi.org/10.1038/s41467-020-17987-8
Luedde, T., Heinrichsdorff, J., de Lorenzi, R., De Vos, R., Roskams, T., & Pasparakis, M. (2008). IKK1 and IKK2 cooperate to maintain bile duct integrity in the liver. Proceedings of the National Academy of Sciences of the United States of America, 105(28), 9733-9738. https://doi.org/10.1073/pnas.0800198105
Luedde, T., & Schwabe, R. (2011). NF-κB in the liver-Linking injury, fibrosis and hepatocellular carcinoma. Nature Reviews. Gastroenterology & Hepatology, 8(2), 108-118. https://doi.org/10.1038/nrgastro.2010.213
Ma, C., Xia, R., Yang, S., Liu, L., Zhang, J., Feng, K., Shang, Y., Qu, J., Li, L., Chen, N., Xu, S., Zhang, W., Mao, J., Han, J., Chen, Y., Yang, X., Duan, Y., & Fan, G. (2020). Formononetin attenuates atherosclerosis via regulating interaction between KLF4 and SRA in apoE mice. Theranostics, 10(3), 1090-1106. https://doi.org/10.7150/thno.38115
Ma, W., & Chen, D. (2019). Immunological abnormalities in patients with primary biliary cholangitis. Clinical Science (London, England : 1979), 133(6), 741-760. https://doi.org/10.1042/CS20181123
Marrone, J., Soria, L., Danielli, M., Lehmann, G., Larocca, M., & Marinelli, R. (2016). Hepatic gene transfer of human aquaporin-1 improves bile salt secretory failure in rats with estrogen-induced cholestasis. Hepatology (Baltimore, Md.), 64(2), 535-548.
Miyoshi, H., Rust, C., Guicciardi, M., & Gores, G. (2001). NF-κB is activated in cholestasis and functions to reduce liver injury. The American Journal of Pathology, 158(3), 967-975. https://doi.org/10.1016/S0002-9440(10)64043-6
Murray, P., & Wynn, T. (2011). Protective and pathogenic functions of macrophage subsets. Nature Reviews. Immunology, 11(11), 723-737. https://doi.org/10.1038/nri3073
Nevens, F., Andreone, P., Mazzella, G., Strasser, S., Bowlus, C., Invernizzi, P., Drenth, J. P., Pockros, P. J., Regula, J., Beuers, U., & Trauner, M. (2016). A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. The New England Journal of Medicine, 375(7), 631-643. https://doi.org/10.1056/NEJMoa1509840
Pan, C., Kim, E., Jung, S., Nho, C., & Lee, J. (2008). Tectorigenin inhibits IFN-γ/LPS-induced inflammatory responses in murine macrophage RAW 264.7 cells. Archives of Pharmacal Research, 31(11), 1447-1456. https://doi.org/10.1007/s12272-001-2129-7
Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., & Emerson, M. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. British Journal of Pharmacology, 177(16), 3617-3624. https://doi.org/10.1111/bph.15193
Quraishi, M., Sergeant, M., Kay, G., Iqbal, T., Chan, J., Constantinidou, C., Trivedi, P., Ferguson, J., Adams, D. H., Pallen, M., & Hirschfield, G. M. (2017). The gut-adherent microbiota of PSC-IBD is distinct to that of IBD. Gut, 66(2), 386-388. https://doi.org/10.1136/gutjnl-2016-311915
Sasatomi, K., Noguchi, K., Sakisaka, S., Sata, M., & Tanikawa, K. (1998). Abnormal accumulation of endotoxin in biliary epithelial cells in primary biliary cirrhosis and primary sclerosing cholangitis. Journal of Hepatology, 29(3), 409-416. https://doi.org/10.1016/S0168-8278(98)80058-5
Silva, A., & Peixoto, C. (2018). Role of peroxisome proliferator-activated receptors in non-alcoholic fatty liver disease inflammation. Cellular and Molecular Life Sciences: CMLS, 75(16), 2951-2961. https://doi.org/10.1007/s00018-018-2838-4
Strautnieks, S., Bull, L., Knisely, A., Kocoshis, S., Dahl, N., Arnell, H., Sokal, E., Dahan, K., Childs, S., Ling, V., & Tanner, M. S. (1998). A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nature Genetics, 20(3), 233-238. https://doi.org/10.1038/3034
Strowig, T., Henao-Mejia, J., Elinav, E., & Flavell, R. (2012). Inflammasomes in health and disease. Nature, 481(7381), 278-286. https://doi.org/10.1038/nature10759
Tacke, F. (2017). Targeting hepatic macrophages to treat liver diseases. Journal of Hepatology, 66(6), 1300-1312. https://doi.org/10.1016/j.jhep.2017.02.026
Tang, R., Wei, Y., Li, Y., Chen, W., Chen, H., Wang, Q., Yang, F., Miao, Q., Xiao, X., Zhang, H., Lian, M., Jiang, X., Zhang, J., Cao, Q., Fan, Z., Wu, M., Qiu, D., Fang, J. Y., Ansari, A., … Ma, X. (2018). Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy. Gut, 67(3), 534-541. https://doi.org/10.1136/gutjnl-2016-313332
Trauner, M., Arrese, M., Soroka, C., Ananthanarayanan, M., Koeppel, T., Schlosser, S., Suchy, F. J., Keppler, D., & Boyer, J. L. (1997). The rat canalicular conjugate export pump (Mrp2) is down-regulated in intrahepatic and obstructive cholestasis. Gastroenterology, 113(1), 255-264. https://doi.org/10.1016/S0016-5085(97)70103-3
Tsochatzis, E., Bosch, J., & Burroughs, A. (2014). Liver cirrhosis. Lancet (London, England), 383(9930), 1749-1761. https://doi.org/10.1016/S0140-6736(14)60121-5
Welcker, K., Martin, A., Kölle, P., Siebeck, M., & Gross, M. (2004). Increased intestinal permeability in patients with inflammatory bowel disease. European Journal of Medical Research, 9(10), 456-460.
Xiong, X., Ding, Y., Chen, Z., Wang, Y., Liu, P., Qin, H., Zhou, L. S., Zhang, L. L., Huang, J., & Zhao, L. (2019). Emodin rescues intrahepatic cholestasis via stimulating FXR/BSEP pathway in promoting the canalicular export of accumulated bile. Frontiers in Pharmacology, 10, 522. https://doi.org/10.3389/fphar.2019.00522
Yang, S., Ma, C., Wu, H., Zhang, H., Yuan, F., Yang, G., Yang, Q., Jia, L., Liang, Z., & Kang, L. (2020). Tectorigenin attenuates diabetic nephropathy by improving vascular endothelium dysfunction through activating AdipoR1/2 pathway. Pharmacological Research, 153, 104678. https://doi.org/10.1016/j.phrs.2020.104678
Yang, S., Wei, L., Xia, R., Liu, L., Chen, Y., Zhang, W., Li, Q., Feng, K., Yu, M., Zhang, W., Qu, J., Xu, S., Mao, J., Fan, G., & Ma, C. (2019). Formononetin ameliorates cholestasis by regulating hepatic SIRT1 and PPARα. Biochemical and Biophysical Research Communications, 512(4), 770-778. https://doi.org/10.1016/j.bbrc.2019.03.131
Yokoda, R., & Carey, E. (2019). Primary biliary cholangitis and primary sclerosing cholangitis. The American Journal of Gastroenterology, 114(10), 1593-1605. https://doi.org/10.14309/ajg.0000000000000268
You, Z., Wang, Q., Bian, Z., Liu, Y., Han, X., Peng, Y., Shen, L., Chen, X., Qiu, D., Selmi, C., Gershwin, M. E., & Ma, X. (2012). The immunopathology of liver granulomas in primary biliary cirrhosis. Journal of Autoimmunity, 39(3), 216-221. https://doi.org/10.1016/j.jaut.2012.05.022
Zhang, S., Yu, M., Guo, F., Yang, X., Chen, Y., Ma, C., Li, Q., Wei, Z., Li, X., Wang, H., Hu, H., Zhang, Y., Kong, D., Miao, Q. R., Hu, W., Hajjar, D. P., Zhu, Y., Han, J., & Duan, Y. (2020). Rosiglitazone alleviates intrahepatic cholestasis induced by α-naphthylisothiocyanate in mice: The role of circulating 15-deoxy-Δ-PGJ and Nogo. British Journal of Pharmacology, 177(5), 1041-1060. https://doi.org/10.1111/bph.14886

Auteurs

Jiaqing Xiang (J)

Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.

Guangyan Yang (G)

Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.

Chuanrui Ma (C)

First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.

Lingling Wei (L)

Institute of Agricultural Economics and Information, Jiangxi Academy of Agricultural Sciences, Jiangxi, China.

Han Wu (H)

Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.
Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.

Wei Zhang (W)

State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China.

Xiuhua Tao (X)

Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Jiangxi, China.

Lingyun Jiang (L)

Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.

Zhen Liang (Z)

Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.

Lin Kang (L)

Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.

Shu Yang (S)

Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.
Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
C-Reactive Protein Humans Biomarkers Inflammation
Humans Immune Checkpoint Inhibitors Lung Neoplasms Prognosis Inflammation

Classifications MeSH