Multinuclear MRI to disentangle intracellular sodium concentration and extracellular volume fraction in breast cancer.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
04 03 2021
Historique:
received: 24 09 2020
accepted: 16 02 2021
entrez: 5 3 2021
pubmed: 6 3 2021
medline: 15 12 2021
Statut: epublish

Résumé

The purpose of this work was to develop a novel method to disentangle the intra- and extracellular components of the total sodium concentration (TSC) in breast cancer from a combination of proton ([Formula: see text]H) and sodium ([Formula: see text]) magnetic resonance imaging (MRI) measurements. To do so, TSC is expressed as function of the intracellular sodium concentration ([Formula: see text]), extracellular volume fraction (ECV) and the water fraction (WF) based on a three-compartment model of the tissue. TSC is measured from [Formula: see text] MRI, ECV is calculated from baseline and post-contrast [Formula: see text]H [Formula: see text] maps, while WF is measured with a [Formula: see text]H chemical shift technique. [Formula: see text] is then extrapolated from the model. Proof-of-concept was demonstrated in three healthy subjects and two patients with triple negative breast cancer. In both patients, TSC was two to threefold higher in the tumor than in normal tissue. This alteration mainly resulted from increased [Formula: see text] ([Formula: see text] 30 mM), which was [Formula: see text] 130% greater than in healthy conditions (10-15 mM) while the ECV was within the expected range of physiological values (0.2-0.25). Multinuclear MRI shows promise for disentangling [Formula: see text] and ECV by taking advantage of complementary [Formula: see text]H and [Formula: see text] measurements.

Identifiants

pubmed: 33664340
doi: 10.1038/s41598-021-84616-9
pii: 10.1038/s41598-021-84616-9
pmc: PMC7933187
doi:

Substances chimiques

Protons 0
Sodium 9NEZ333N27

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

5156

Subventions

Organisme : NCI NIH HHS
ID : R21 CA213169
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG066512
Pays : United States
Organisme : NIBIB NIH HHS
ID : R21 EB027263
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK106292
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK114428
Pays : United States
Organisme : NIA NIH HHS
ID : R21 AG061579
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01 EB026456
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS097494
Pays : United States
Organisme : NIBIB NIH HHS
ID : P41 EB017183
Pays : United States

Références

Azamjah, N., Soltan-Zadeh, Y. & Zayeri, F. Global trend of breast cancer mortality rate: a 25-year study. APJCP 20, 2015 (2019).
pubmed: 31350959 pmcid: 6745227
Bray, F. et al. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).
pubmed: 30207593 doi: 10.3322/caac.21492
Shahid, H., Wiedenhoefer, J. F., Dornbluth, C., Otto, P. & Kist, K. A. An overview of breast MRI. Appl. Radiol. 45, 7 (2016).
doi: 10.37549/AR2317
Partridge, S. C. & Amornsiripanitch, N. The role of DWI in the assessment of breast lesions. TMRI 26, 201 (2017).
pubmed: 28961569
Jacobs, M. A. et al. Multiparametric and multinuclear magnetic resonance imaging of human breast cancer: current applications. Technol. Cancer Res. Treat. 3, 543–50. https://doi.org/10.1177/153303460400300603 (2004).
doi: 10.1177/153303460400300603 pubmed: 15560711
Jacobs, M. A. et al. Monitoring of neoadjuvant chemotherapy using multiparametric, [Formula: see text]Na sodium MR, and multimodality (PET/CT/MRI) imaging in locally advanced breast cancer. Breast Cancer Res. Treat. 128, 119–26. https://doi.org/10.1007/s10549-011-1442-1 (2011).
doi: 10.1007/s10549-011-1442-1 pubmed: 21455671 pmcid: 3184601
Zaric, O. et al. Quantitative sodium MR imaging at 7 T: initial results and comparison with diffusion-weighted imaging in patients with breast tumors. Radiology 280, 39–48. https://doi.org/10.1148/radiol.2016151304 (2016).
doi: 10.1148/radiol.2016151304 pubmed: 27007803
Ouwerkerk, R. et al. Elevated tissue sodium concentration in malignant breast lesions detected with non-invasive [Formula: see text]Na MRI. Breast Cancer Res. Treat. 106, 151–60. https://doi.org/10.1007/s10549-006-9485-4 (2007).
doi: 10.1007/s10549-006-9485-4 pubmed: 17260093
Madelin, G. & Regatte, R. R. Biomedical applications of sodium MRI in vivo. J. Magn. Reson. Imaging 38, 511–529. https://doi.org/10.1002/jmri.24168 (2013).
doi: 10.1002/jmri.24168 pubmed: 23722972 pmcid: 3759542
Cameron, I. L., Smith, N. K., Pool, T. B. & Sparks, R. L. Intracellular concentration of sodium and other elements as related to mitogenesis and oncogenesis in vivo. Cancer Res. 40, 1493–500 (1980).
pubmed: 7370987
Li, L. et al. Simultaneous quantitation of Na(+) and K(+) in single normal and cancer cells using a new near-infrared fluorescent probe. Anal. Chem. 87, 6057–63. https://doi.org/10.1021/acs.analchem.5b00571 (2015).
doi: 10.1021/acs.analchem.5b00571 pubmed: 25973531
Burstein, D. & Springer, C. S. J. Sodium MRI revisited. Magn. Reson. Med. 82, 521–524 (2019).
pubmed: 30927278 doi: 10.1002/mrm.27738
Madelin, G., Kline, R., Walvick, R. & Regatte, R. R. A method for estimating intracellular sodium concentration and extracellular volume fraction in brain in vivo using sodium magnetic resonance imaging. Sci. Rep. 4, 4763 (2014).
pubmed: 24755879 pmcid: 4762219 doi: 10.1038/srep04763
Tanase, C. & Boada, F. E. Triple-quantum-filtered imaging of sodium in presence of B0 inhomogeneities. J. Magn. Reson. 174, 270–278 (2005).
pubmed: 15862244 doi: 10.1016/j.jmr.2005.02.012
Fleysher, L. et al. Noninvasive quantification of intracellular sodium in human brain using ultrahigh-field MRI. NMR Biomed. 26, 9–19 (2013).
pubmed: 22714793 doi: 10.1002/nbm.2813
Jelicks, L. A. & Gupta, R. K. On the extracellular contribution to multiple quantum filtered 23Na NMR of perfused rat heart. Magn. Reson. Med. 29, 130–133 (1993).
pubmed: 8419734 doi: 10.1002/mrm.1910290124
Navon, G. Complete elimination of the extracellular 23Na NMR signal in triple quantum filtered spectra of rat hearts in the presence of shift reagents. Magn. Reson. Med. 30, 503–506 (1993).
pubmed: 8255200 doi: 10.1002/mrm.1910300415
Eykyn, T. R. et al. Multiple quantum filtered 23Na NMR in the langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [na]i. J. Mol. Cell. Cardiol. 86, 95–101 (2015).
pubmed: 26196304 pmcid: 4564289 doi: 10.1016/j.yjmcc.2015.07.009
Jelicks, L. & Gupta, R. Multinuclear NMR studies of the langendorff perfused rat heart. J. Biol. Chem. 264, 15230–15235 (1989).
pubmed: 2768258 doi: 10.1016/S0021-9258(19)84814-7
Hutchison, R., Malhotra, D., Hendrick, R. E., Chan, L. & Shapiro, J. I. Evaluation of the double-quantum filter for the measurement of intracellular sodium concentration. J. Biol. Chem. 265, 15506–15510 (1990).
pubmed: 2394737 doi: 10.1016/S0021-9258(18)55425-9
Madelin, G., Lee, J. S., Inati, S., Jerschow, A. & Regatte, R. R. Sodium inversion recovery MRI of the knee joint in vivo at 7T. J. Magn. Reson. 207, 42–52 (2010).
pubmed: 20813569 pmcid: 2989635 doi: 10.1016/j.jmr.2010.08.003
Stobbe, R. & Beaulieu, C. In vivo sodium magnetic resonance imaging of the human brain using soft inversion recovery fluid attenuation. Magn. Reson. Med. 54, 1305–1310 (2005).
pubmed: 16217782 doi: 10.1002/mrm.20696
Lee, J. S., Xia, D., Madelin, G. & Regatte, R. R. Sodium inversion recovery MRI on the knee joint at 7 T with an optimal control pulse. J. Magn. Reson. 262, 33–41 (2016).
pubmed: 26705907 doi: 10.1016/j.jmr.2015.12.002
Haaf, P. et al. Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J. Cardiovasc. Magn. Reson. 18, 1–12 (2017).
doi: 10.1186/s12968-016-0308-4
Scully, P. R., Bastarrika, G., Moon, J. C. & Treibel, T. A. Myocardial extracellular volume quantification by cardiovascular magnetic resonance and computed tomography. Curr. Cardiol. Rep. 20, 15 (2018).
pubmed: 29511861 pmcid: 5840231 doi: 10.1007/s11886-018-0961-3
Ugander, M. et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur. Heart J. 33, 1268–1278 (2012).
pubmed: 22279111 pmcid: 3350985 doi: 10.1093/eurheartj/ehr481
Schelbert, E. B., Sabbah, H. N., Butler, J. & Gheorghiade, M. Employing extracellular volume cardiovascular magnetic resonance measures of myocardial fibrosis to foster novel therapeutics. Circul. Cardiovasc. Imaging 10, e005619 (2017).
doi: 10.1161/CIRCIMAGING.116.005619
Jiang, Y. & Tsao, J. Fast and robust separation of multiple chemical species from arbitrary echo times with complete immunity to phase wrapping. In Proceedings of the 20th Annual Meeting of ISMRM, 388 (ISMRM Concord, California, USA, 2012).
Hu, H. H. et al. ISMRM workshop on fat-water separation: insights, applications and progress in MRI. Magn. Reson. Med. 68, 378–388 (2012).
pubmed: 22693111 pmcid: 3575097 doi: 10.1002/mrm.24369
Winter, P. M. & Bansal, N. Tmdotp5- as a 23Na shift reagent for the subcutaneously implanted 9l gliosarcoma in rats. Magn. Reson. Med. 45, 436–442 (2001).
pubmed: 11241701 doi: 10.1002/1522-2594(200103)45:3<436::AID-MRM1057>3.0.CO;2-6
Gilles, A., Nagel, A. & Madelin, G. Multipulse sodium magnetic resonance imaging for multicompartment quantification: proof-of-concept. Nat. Sci. Rep., https://doi.org/10.1038/s41598-017-17582-w (2017).
doi: 10.1038/s41598-017-17582-w
Marques, J. P. et al. Mp2rage, a self bias-field corrected sequence for improved segmentation and t1-mapping at high field. Neuroimage 49, 1271–1281 (2010).
pubmed: 19819338 doi: 10.1016/j.neuroimage.2009.10.002
Poku, L. O., Phil, M., Cheng, Y., Wang, K. & Sun, X. 23Na-MRI as a noninvasive biomarker for cancer diagnosis and prognosis. J. Magn. Reson. Imaging (2020).
Bottomley, P. Sodium MRI in man: technique and findings. emagres (2012).
Leslie, T. K. et al. Sodium homeostasis in the tumour microenvironment. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer1872, 188304 (2019).
Ramakrishnan, R., Khan, S. A. & Badve, S. Morphological changes in breast tissue with menstrual cycle. Mod. Pathol. 15, 1348–1356 (2002).
pubmed: 12481017 doi: 10.1097/01.MP.0000039566.20817.46
Morris, E. A. The normal breast. In Breast MRI, 23–44 (Springer, 2005).
Zeppa, R. Vascular response of the breast to estrogen. J. Clin. Endocrinol. Metab. 29, 695–700 (1969).
pubmed: 5781782 doi: 10.1210/jcem-29-5-695
Ramalho, J. et al. Gadolinium-based contrast agent accumulation and toxicity: an update. Am. J. Neuroradiol. 37, 1192–1198 (2016).
pubmed: 26659341 doi: 10.3174/ajnr.A4615 pmcid: 7960350
Crescenzi, R. et al. Tissue sodium content is elevated in the skin and subcutaneous adipose tissue in women with lipedema. Obesity 26, 310–317 (2018).
pubmed: 29280322 doi: 10.1002/oby.22090
Constantinides, C. D., Gillen, J. S., Boada, F. E., Pomper, M. G. & Bottomley, P. A. Human skeletal muscle: sodium MR imaging and quantification-potential applications in exercise and disease. Radiology 216, 559–568 (2000).
pubmed: 10924586 doi: 10.1148/radiology.216.2.r00jl46559
Lu, A., Atkinson, I. C., Claiborne, T. C., Damen, F. C. & Thulborn, K. R. Quantitative sodium imaging with a flexible twisted projection pulse sequence. Magn. Reson. Med. 63, 1583–1593 (2010).
pubmed: 20512862 pmcid: 2879672 doi: 10.1002/mrm.22381
Barrett, T. et al. Quantification of total and intracellular sodium concentration in primary prostate cancer and adjacent normal prostate tissue with magnetic resonance imaging. Invest. Radiol. 53, 450–456 (2018).
pubmed: 29969108 doi: 10.1097/RLI.0000000000000470
Ianniello, C. et al. Synthesized tissue-equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions. Magn. Reson. Med. https://doi.org/10.1002/mrm.27005 (2017).
doi: 10.1002/mrm.27005 pubmed: 29159985 pmcid: 5876111
McDougall, M. P. et al. Quadrature transmit coil for breast imaging at 7 Tesla using forced current excitation for improved homogeneity. J. Magn. Reson. Imaging 40, 1165–73. https://doi.org/10.1002/jmri.24473 (2014).
doi: 10.1002/jmri.24473 pubmed: 24459091 pmcid: 4110201
Zbyn, S. et al. Bilateral in vivo mapping of sodium relaxation times in breasts at 7T. In Proceedings of the 23rd annual meeting of ISMRM (2015).
Tsao, J. & Jiang, Y. Hierarchical IDEAL: fast, robust, and multiresolution separation of multiple chemical species from multiple echo times. Magn. Reson. Med. 70, 155–159 (2013).
pubmed: 22887356 doi: 10.1002/mrm.24441
Costa, D. N., Pedrosa, I., McKenzie, C., Reeder, S. B. & Rofsky, N. M. Body MRI using ideal. Am. J. Roentgenol. 190, 1076–1084 (2008).
doi: 10.2214/AJR.07.3182
Kellman, P., Wilson, J. R., Xue, H., Ugander, M. & Arai, A. E. Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J. Cardiovasc. Magn. Reson. 14, 1–11 (2012).
Barison, A. et al. Early myocardial and skeletal muscle interstitial remodelling in systemic sclerosis: insights from extracellular volume quantification using cardiovascular magnetic resonance. Eur. Heart J. Cardiovasc. Imaging 16, 74–80 (2015).
pubmed: 25190071 doi: 10.1093/ehjci/jeu167
Sorace, A. G. et al. Distinguishing benign and malignant breast tumors: preliminary comparison of kinetic modeling approaches using multi-institutional dynamic contrast-enhanced MRI data from the international breast mr consortium 6883 trial. J. Med. Imaging 5, 011019 (2018).
Planey, C. R. et al. Temporal sampling requirements for reference region modeling of DCE-MRI data in human breast cancer. J. Magn. Reson. Imaging 30, 121–134 (2009).
pubmed: 19557727 pmcid: 2782711 doi: 10.1002/jmri.21812
Galbraith, S. M. et al. Reproducibility of dynamic contrast-enhanced MRI in human muscle and tumours: comparison of quantitative and semi-quantitative analysis. NMR Biomed. Int. J. Devoted Dev. Appl. Magn. Reson In Vivo 15, 132–142 (2002).
Ouwerkerk, R. Sodium MRI. In Magnetic resonance neuroimaging, 175–201 (Springer, 2011).
Ianniello, C., Madelin, G., Moy, L. & Brown, R. A dual-tuned multichannel bilateral RF coil for 1H/23Na breast MRI at 7 T. Magn. Reson. Med. 82, 1566–1575 (2019).
pubmed: 31148249 pmcid: 6626555 doi: 10.1002/mrm.27829
Brown, R. et al. Breast MRI at 7 Tesla with a bilateral coil and T1-weighted acquisition with robust fat suppression: image evaluation and comparison with 3 Tesla. Eur. Radiol. 23, 2969–78. https://doi.org/10.1007/s00330-013-2972-1 (2013).
doi: 10.1007/s00330-013-2972-1 pubmed: 23896763 pmcid: 4036120
Pipe, J. G. et al. A new design and rationale for 3D orthogonally oversampled k-space trajectories. Magn. Reson. Med. 66, 1303–11. https://doi.org/10.1002/mrm.22918 (2011).
doi: 10.1002/mrm.22918 pubmed: 21469190
Ackerman, G. L. Serum sodium. In Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edition (Butterworths, 1990).
Harrington, M. G. et al. Cerebrospinal fluid sodium rhythms. Cerebrospinal Fluid Res. 7, 3 (2010).
pubmed: 20205754 pmcid: 2822736 doi: 10.1186/1743-8454-7-3
Sterns, R. H. Disorders of plasma sodium-causes, consequences, and correction. N. Engl. J. Med. 372, 55–65 (2015).
pubmed: 25551526 doi: 10.1056/NEJMra1404489
Heer, M., Baisch, F., Kropp, J., Gerzer, R. & Drummer, C. High dietary sodium chloride consumption may not induce body fluid retention in humans. Am. J. Physiol. Renal Physiol. 278, F585–F595 (2000).
pubmed: 10751219 doi: 10.1152/ajprenal.2000.278.4.F585
Padhani, A. R., Hayes, C., Landau, S. & Leach, M. O. Reproducibility of quantitative dynamic MRI of normal human tissues. NMR Biomed. Int. J. Devoted Dev. Appl. Magn. Reson. In Vivo 15, 143–153 (2002).
Yankeelov, T. E. et al. Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. Magn. Reson. Imaging 23, 519–529 (2005).
pubmed: 15919597 doi: 10.1016/j.mri.2005.02.013

Auteurs

Carlotta Ianniello (C)

Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA.

Linda Moy (L)

Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA.
Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, 10016, USA.

Justin Fogarty (J)

Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.

Freya Schnabel (F)

Department of Surgery, New York University Grossman School of Medicine, New York, NY, 10016, USA.
Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, 10016, USA.

Sylvia Adams (S)

Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA.
Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, 10016, USA.

Deborah Axelrod (D)

Department of Surgery, New York University Grossman School of Medicine, New York, NY, 10016, USA.
Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, 10016, USA.

Leon Axel (L)

Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA.

Ryan Brown (R)

Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA.

Guillaume Madelin (G)

Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA. Guillaume.Madelin@nyulangone.org.
Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA. Guillaume.Madelin@nyulangone.org.
Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, 10016, USA. Guillaume.Madelin@nyulangone.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH