Dopaminergic and Metabolic Correlations With Cognitive Domains in Non-demented Parkinson's Disease.
Parkinson’s disease
cognitive domain
dopamine transporter
glucose metabolism
mild cognitive impairment
Journal
Frontiers in aging neuroscience
ISSN: 1663-4365
Titre abrégé: Front Aging Neurosci
Pays: Switzerland
ID NLM: 101525824
Informations de publication
Date de publication:
2021
2021
Historique:
received:
09
11
2020
accepted:
20
01
2021
entrez:
5
3
2021
pubmed:
6
3
2021
medline:
6
3
2021
Statut:
epublish
Résumé
Accruing positron emission tomography (PET) studies have suggested that dopaminergic functioning and metabolic changes are correlated with cognitive dysfunction in Parkinson's disease (PD). Yet, the relationship between dopaminergic or cerebral metabolism and different cognitive domains in PD is poorly understood. To address this scarcity, we aimed to investigate the interactions among dopaminergic bindings, metabolic network changes, and the cognitive domains in PD patients. We recruited 41 PD patients, including PD patients with no cognitive impairment (PD-NC; 11C-CFT imaging revealed a significant positive correlation between executive function and striatal dopamine transporter (DAT) binding at both the voxel and regional levels. Metabolic imaging revealed that executive function correlated with 18F-FDG uptake, mainly in inferior frontal gyrus, putamen, and insula. Further analysis indicated that striatal DAT binding correlated strictly with metabolic activity in the temporal gyrus, medial frontal gyrus, and cingulate gyrus. Our findings might promote the understanding of the neurobiological mechanisms underlying cognitive impairment in PD.
Sections du résumé
BACKGROUND
BACKGROUND
Accruing positron emission tomography (PET) studies have suggested that dopaminergic functioning and metabolic changes are correlated with cognitive dysfunction in Parkinson's disease (PD). Yet, the relationship between dopaminergic or cerebral metabolism and different cognitive domains in PD is poorly understood. To address this scarcity, we aimed to investigate the interactions among dopaminergic bindings, metabolic network changes, and the cognitive domains in PD patients.
METHODS
METHODS
We recruited 41 PD patients, including PD patients with no cognitive impairment (PD-NC;
RESULTS
RESULTS
11C-CFT imaging revealed a significant positive correlation between executive function and striatal dopamine transporter (DAT) binding at both the voxel and regional levels. Metabolic imaging revealed that executive function correlated with 18F-FDG uptake, mainly in inferior frontal gyrus, putamen, and insula. Further analysis indicated that striatal DAT binding correlated strictly with metabolic activity in the temporal gyrus, medial frontal gyrus, and cingulate gyrus.
CONCLUSION
CONCLUSIONS
Our findings might promote the understanding of the neurobiological mechanisms underlying cognitive impairment in PD.
Identifiants
pubmed: 33664663
doi: 10.3389/fnagi.2021.627356
pmc: PMC7921728
doi:
Types de publication
Journal Article
Langues
eng
Pagination
627356Informations de copyright
Copyright © 2021 Han, Lu, Tang, Fan, Chen, Li, Liu, Wang, Zuo and Zhao.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Mov Disord. 2014 Apr 15;29(5):634-50
pubmed: 24757112
Hum Brain Mapp. 2018 Dec;39(12):4652-4662
pubmed: 29999569
Neurol Sci. 2002 Mar;22(6):443-7
pubmed: 11976975
Neurol Sci. 2018 Feb;39(2):215-223
pubmed: 29043468
Clin Neuropsychol. 2005 Jun;19(2):243-69
pubmed: 16019707
Mov Disord. 2014 Dec;29(14):1802-8
pubmed: 25284687
Mov Disord. 2007 Sep 15;22(12):1689-707; quiz 1837
pubmed: 17542011
Brain. 2004 Mar;127(Pt 3):550-60
pubmed: 14691062
Mov Disord. 2012 Mar;27(3):349-56
pubmed: 22275317
Mov Disord. 2010 Jan 15;25(1):35-43
pubmed: 20058228
Arch Clin Neuropsychol. 2006 Jan;21(1):23-8
pubmed: 16139470
Lancet Neurol. 2010 Dec;9(12):1200-1213
pubmed: 20880750
PLoS One. 2013;8(2):e57333
pubmed: 23437370
J Nucl Med. 2010 Jan;51(1):7-15
pubmed: 20008998
Neuroimage. 2013 Sep;78:204-9
pubmed: 23578575
Hum Brain Mapp. 2013 Nov;34(11):3031-54
pubmed: 22711692
Brain. 2014 Feb;137(Pt 2):565-75
pubmed: 24334314
Acta Neurol Scand. 2015 May;131(5):275-81
pubmed: 25644029
Nucl Med Commun. 2019 Dec;40(12):1216-1223
pubmed: 31584466
Neuroimage. 2019 Aug 1;196:59-67
pubmed: 30954711
J Clin Epidemiol. 1988;41(10):971-8
pubmed: 3193141
Prog Neurobiol. 2008 Nov;86(3):141-55
pubmed: 18824075
Neurobiol Aging. 2012 Jan;33(1):206.e29-39
pubmed: 20961661
Parkinsonism Relat Disord. 2018 Jun;51:43-48
pubmed: 29526657
Brain. 2001 Apr;124(Pt 4):784-92
pubmed: 11287377
J Neurol Neurosurg Psychiatry. 1992 Mar;55(3):181-4
pubmed: 1564476
Clin Neuropsychol. 2005 Sep-Dec;19(3-4):329-77
pubmed: 16120535
Alzheimer Dis Assoc Disord. 2009 Jul-Sep;23(3):253-9
pubmed: 19812468
J Psychiatr Res. 1982-1983;17(1):37-49
pubmed: 7183759
JAMA Neurol. 2015 Feb;72(2):194-200
pubmed: 25506674
Arch Neurol. 2000 Apr;57(4):470-5
pubmed: 10768619
Acta Neurol Scand. 2018 Aug;138(2):170-176
pubmed: 29573392
Nat Rev Neurosci. 2010 Nov;11(11):760-72
pubmed: 20944662
Brain Struct Funct. 2010 Jun;214(5-6):655-67
pubmed: 20512370
Aging (Albany NY). 2019 Jul 17;11(14):5008-5034
pubmed: 31314744
Neurosci Biobehav Rev. 2013 Dec;37(10 Pt 2):2676-88
pubmed: 24035740
PLoS One. 2016 Apr 11;11(4):e0152716
pubmed: 27064684
Mov Disord Clin Pract. 2020 Mar 16;7(3):343-345
pubmed: 32258239
J Cereb Blood Flow Metab. 2020 Mar;40(3):552-562
pubmed: 30741074
Clin Nucl Med. 2018 Aug;43(8):562-571
pubmed: 29863572
Mov Disord. 2008 Apr 30;23(6):837-44
pubmed: 18307261
Brain. 2015 Jun;138(Pt 6):1454-76
pubmed: 25888551
Brain Struct Funct. 2018 Jul;223(6):2999-3006
pubmed: 29623428
Neurol Sci. 2016 Jun;37(6):867-73
pubmed: 26863871
Neuroscientist. 2004 Dec;10(6):525-37
pubmed: 15534038