Comparative transcriptomics of ice-crawlers demonstrates cold specialization constrains niche evolution in a relict lineage.
Grylloblattodea
adaptation
gene regulation
insect phylogenomics
niche conservatism
protein evolution
Journal
Evolutionary applications
ISSN: 1752-4571
Titre abrégé: Evol Appl
Pays: England
ID NLM: 101461828
Informations de publication
Date de publication:
Feb 2021
Feb 2021
Historique:
received:
11
05
2020
revised:
25
07
2020
accepted:
17
08
2020
entrez:
5
3
2021
pubmed:
6
3
2021
medline:
6
3
2021
Statut:
epublish
Résumé
Key changes in ecological niche space are often critical to understanding how lineages diversify during adaptive radiations. However, the converse, or understanding why some lineages are depauperate and relictual, is more challenging, as many factors may constrain niche evolution. In the case of the insect order Grylloblattodea, highly conserved thermal breadth is assumed to be closely tied to their relictual status, but has not been formerly tested. Here, we investigate whether evolutionary constraints in the physiological tolerance of temperature can help explain relictualism in this lineage. Using a comparative transcriptomics approach, we investigate gene expression following acute heat and cold stress across members of Grylloblattodea and their sister group, Mantophasmatodea. We additionally examine patterns of protein evolution, to identify candidate genes of positive selection. We demonstrate that cold specialization in Grylloblattodea has been accompanied by the loss of the inducible heat shock response under both acute heat and cold stress. Additionally, there is widespread evidence of selection on protein-coding genes consistent with evolutionary constraints due to cold specialization. This includes positive selection on genes involved in trehalose transport, metabolic function, mitochondrial function, oxygen reduction, oxidative stress, and protein synthesis. These patterns of molecular adaptation suggest that Grylloblattodea have undergone evolutionary trade-offs to survive in cold habitats and should be considered highly vulnerable to climate change. Finally, our transcriptomic data provide a robust backbone phylogeny for generic relationships within Grylloblattodea and Mantophasmatodea. Major phylogenetic splits in each group relate to arid conditions driving biogeographical patterns, with support for a sister-group relationship between North American
Identifiants
pubmed: 33664782
doi: 10.1111/eva.13120
pii: EVA13120
pmc: PMC7896716
doi:
Types de publication
Journal Article
Langues
eng
Pagination
360-382Informations de copyright
© 2020 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd.
Références
J Comput Biol. 2000;7(6):761-76
pubmed: 11382360
J Hered. 2018 May 11;109(4):477-483
pubmed: 29206981
Proc Biol Sci. 2019 Jan 30;286(1895):20182076
pubmed: 30963947
Physiol Biochem Zool. 2008 Nov-Dec;81(6):709-17
pubmed: 18844483
BMC Evol Biol. 2009 Jul 08;9:157
pubmed: 19586527
Mol Phylogenet Evol. 2008 May;47(2):443-62
pubmed: 18396416
Mol Biol Evol. 2000 Apr;17(4):540-52
pubmed: 10742046
Nat Rev Genet. 2011 Nov 03;12(12):833-45
pubmed: 22048664
J Exp Biol. 2015 Jun;218(Pt 12):1925-35
pubmed: 26085669
Bioinformatics. 2007 Nov 1;23(21):2947-8
pubmed: 17846036
PLoS One. 2013 Nov 06;8(11):e80243
pubmed: 24223223
J Therm Biol. 2015 Oct;53:180-97
pubmed: 26590471
Front Cell Neurosci. 2018 Aug 29;12:281
pubmed: 30210303
Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):E9433-E9434
pubmed: 29078408
Mol Biol Evol. 2018 Jun 1;35(6):1473-1488
pubmed: 29596684
Mol Biol Evol. 2013 Apr;30(4):772-80
pubmed: 23329690
BMC Biol. 2008 Jan 22;6:5
pubmed: 18211703
Mol Biol Evol. 2012 Oct;29(10):2921-36
pubmed: 22491036
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):7068-73
pubmed: 23569229
Trends Ecol Evol. 2014 Dec;29(12):655-63
pubmed: 25454211
PLoS Comput Biol. 2019 Apr 8;15(4):e1006650
pubmed: 30958812
Biol Rev Camb Philos Soc. 2003 May;78(2):181-95
pubmed: 12803420
Front Zool. 2014 Nov 18;11(1):81
pubmed: 25426157
Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6815-9
pubmed: 9192648
Bioinformatics. 2015 Jun 15;31(12):i44-52
pubmed: 26072508
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
Mol Biol Evol. 1995 Jul;12(4):546-57
pubmed: 7659011
Mol Biol Evol. 2002 Jun;19(6):908-17
pubmed: 12032247
Arthropod Struct Dev. 2018 Jul;47(4):328-338
pubmed: 29763650
Proteins. 1997 Jul;28(3):405-20
pubmed: 9223186
Annu Rev Physiol. 2005;67:225-57
pubmed: 15709958
Syst Biol. 2009 Feb;58(1):21-34
pubmed: 20525566
J Exp Biol. 2020 Feb 12;223(Pt 3):
pubmed: 32051174
Mol Biol Evol. 2008 Jul;25(7):1307-20
pubmed: 18367465
J Mol Biol. 2007 Nov 23;374(2):547-62
pubmed: 17936781
Nucleic Acids Res. 2017 Jun 20;45(11):e100
pubmed: 28334822
Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):14223-7
pubmed: 16968769
PeerJ. 2018 Jan 17;6:e4234
pubmed: 29372116
Proc Natl Acad Sci U S A. 2009 Nov 17;106 Suppl 2:19699-706
pubmed: 19843698
Zootaxa. 2013 Nov 21;3737:351-78
pubmed: 25112759
Comp Funct Genomics. 2012;2012:424526
pubmed: 22611337
Mol Biol Evol. 2007 Aug;24(8):1586-91
pubmed: 17483113
Sci Rep. 2018 Mar 23;8(1):5082
pubmed: 29572464
Genome Biol. 2010;11(2):R14
pubmed: 20132535
Syst Biol. 2012 Jul;61(4):609-29
pubmed: 22508719
Behav Processes. 2019 Sep;166:103907
pubmed: 31302240
Science. 2014 Nov 7;346(6210):763-7
pubmed: 25378627
J Biosci. 2007 Apr;32(3):489-99
pubmed: 17536168
Elife. 2017 Oct 24;6:
pubmed: 29063832
Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515
pubmed: 30395287
Mol Phylogenet Evol. 2006 Oct;41(1):222-37
pubmed: 16798019
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):E1180
pubmed: 23650651
Genome Biol. 2010;11(3):R25
pubmed: 20196867
Front Zool. 2010 Mar 31;7:10
pubmed: 20356385
Mol Phylogenet Evol. 2014 Nov;80:231-66
pubmed: 25152276
BMC Bioinformatics. 2013 Dec 03;14:348
pubmed: 24299043
J Biol Chem. 2000 Nov 24;275(47):37038-47
pubmed: 10956651
BMC Bioinformatics. 2011 Aug 04;12:323
pubmed: 21816040
Nat Ecol Evol. 2018 Aug;2(8):1280-1288
pubmed: 29967485
Genetics. 2006 Jan;172(1):275-86
pubmed: 16204210
Bioinformatics. 2010 Jan 1;26(1):139-40
pubmed: 19910308
Mol Biol Evol. 2001 May;18(5):691-9
pubmed: 11319253
Mol Biol Evol. 2013 May;30(5):1196-205
pubmed: 23420840
Biol Lett. 2008 Oct 23;4(5):568-72
pubmed: 18664421
Annu Rev Entomol. 2015 Jan 7;60:59-75
pubmed: 25341107
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Mol Biol Evol. 2016 Oct;33(10):2735-43
pubmed: 27343287
Bioinformatics. 2014 Aug 15;30(16):2280-7
pubmed: 24764459
Science. 2013 Aug 2;341(6145):504-8
pubmed: 23908228
PLoS One. 2015 Jun 02;10(6):e0128976
pubmed: 26034990
Mol Ecol Resour. 2017 Nov;17(6):1385-1392
pubmed: 28374552
BMC Bioinformatics. 2011 Apr 22;12:116
pubmed: 21513511
Annu Rev Physiol. 2017 Feb 10;79:187-208
pubmed: 27860831
Mol Biol Cell. 2000 Dec;11(12):4241-57
pubmed: 11102521
Proc Biol Sci. 2010 Nov 22;277(1699):3401-10
pubmed: 20534610
Evolution. 2018 Oct;72(10):2005-2024
pubmed: 30151822
Mol Biol Evol. 2015 Jan;32(1):268-74
pubmed: 25371430
J Insect Physiol. 2015 Jul;78:55-61
pubmed: 25956197
J Exp Biol. 2015 Jun;218(Pt 12):1834-45
pubmed: 26085661
Nat Methods. 2015 Jan;12(1):59-60
pubmed: 25402007
J Exp Biol. 2000 Aug;203(Pt 15):2331-9
pubmed: 10887071
Curr Biol. 2017 Apr 3;27(7):1013-1018
pubmed: 28343967
Cell Rep. 2017 Jan 17;18(3):762-776
pubmed: 28099853
BMC Biol. 2019 Dec 16;17(1):105
pubmed: 31842858
Mol Biol Evol. 2005 Feb;22(2):193-9
pubmed: 15483331
Annu Rev Entomol. 2019 Jan 7;64:227-242
pubmed: 30312552
PLoS Genet. 2013;9(7):e1003598
pubmed: 23874212
Sci Rep. 2015 Sep 10;5:13965
pubmed: 26355841
BMC Genet. 2011 Jun 22;12:57
pubmed: 21696597
BMC Evol Biol. 2019 Jan 14;19(1):22
pubmed: 30642241
J Comput Biol. 2003;10(6):997-1010
pubmed: 14980022
Bioinformatics. 2011 Feb 15;27(4):592-3
pubmed: 21169378
Sci Rep. 2016 Jul 29;6:30582
pubmed: 27469628
Mol Biol Evol. 1993 Nov;10(6):1396-401
pubmed: 8277861
Nat Protoc. 2013 Aug;8(8):1494-512
pubmed: 23845962
Nature. 2011 May 19;473(7347):337-42
pubmed: 21593866
Mol Phylogenet Evol. 2016 Jan;94(Pt A):447-62
pubmed: 26518740
Nat Methods. 2017 Jun;14(6):587-589
pubmed: 28481363
Extremophiles. 1999 Aug;3(3):221-6
pubmed: 10484178
Science. 2009 Feb 6;323(5915):732-7
pubmed: 19197052
J Exp Biol. 2015 Jun;218(Pt 12):1915-24
pubmed: 26085668
Mol Biol Evol. 2012 Nov;29(11):3345-58
pubmed: 22617951
BMC Evol Biol. 2019 Nov 6;19(1):205
pubmed: 31694524
BMC Bioinformatics. 2017 Feb 16;18(1):111
pubmed: 28209129
Insect Mol Biol. 2016 Aug;25(4):431-49
pubmed: 27089053
Trends Ecol Evol. 2013 Apr;28(4):199-204
pubmed: 23218499
J Insect Physiol. 2010 Dec;56(12):1889-94
pubmed: 20713057
Comp Biochem Physiol A Mol Integr Physiol. 2001 Jun;129(2-3):417-31
pubmed: 11423314
J Exp Biol. 2014 Jan 1;217(Pt 1):6-15
pubmed: 24353199
Bioinformatics. 2014 Jun 15;30(12):1660-6
pubmed: 24532719
J Biomed Inform. 2006 Feb;39(1):34-42
pubmed: 15922672
Comput Appl Biosci. 1992 Jun;8(3):275-82
pubmed: 1633570
Mol Phylogenet Evol. 2013 Mar;66(3):915-27
pubmed: 23220515