Immune-related genes with APA in microenvironment indicate risk stratification and clinical prognosis in grade II/III gliomas.
alternative polyadenylation
immune infiltration
immune-related genes
lower-grade glioma
Journal
Molecular therapy. Nucleic acids
ISSN: 2162-2531
Titre abrégé: Mol Ther Nucleic Acids
Pays: United States
ID NLM: 101581621
Informations de publication
Date de publication:
05 Mar 2021
05 Mar 2021
Historique:
received:
06
08
2020
accepted:
28
01
2021
entrez:
5
3
2021
pubmed:
6
3
2021
medline:
6
3
2021
Statut:
epublish
Résumé
Tumor microenvironment and alternative polyadenylation (APA) have drawn more attention in cancer research. However, their roles in grade II and III gliomas, termed as lower-grade glioma (LGG) in this study, remain to be fully elucidated. Here, we conducted this study and found that stromal and immune scores were elevated in higher grade and isocitrate dehydrogenase (IDH) wild-type glioma. Besides, higher stromal and immune scores indicated a poor prognosis in patients with LGG. APA events in immune-related genes were associated with overall survival, RNA expression, IDH mutation, and disease-free survival. Patients in the high-risk group had poor prognoses, and the risk score could be used to predict the survival rate. The risk score was positively correlated with the expression of immune checkpoints, inflammatory cytokines, and infiltrated immune cells. Moreover, risk stratification could predict the efficacy of radiotherapy and provide a reference for the treatment of grade III glioma. Our study revealed that immune-related genes with APA events in the microenvironment could predict risk stratification and clinical prognosis in patients with LGG.
Identifiants
pubmed: 33665000
doi: 10.1016/j.omtn.2021.01.033
pii: S2162-2531(21)00033-0
pmc: PMC7900014
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1229-1242Informations de copyright
© 2021 The Author(s).
Déclaration de conflit d'intérêts
The authors declare no competing interests.
Références
Ann Transl Med. 2019 Oct;7(20):541
pubmed: 31807523
Aging (Albany NY). 2019 Dec 10;11(23):11474-11489
pubmed: 31821170
Mol Plant. 2020 Aug 3;13(8):1194-1202
pubmed: 32585190
Cancer Cell Int. 2020 Jan 17;20:22
pubmed: 31988638
Nucleic Acids Res. 2018 Jan 4;46(D1):D1027-D1030
pubmed: 30053266
Aging (Albany NY). 2020 Apr 20;12(8):6966-6980
pubmed: 32310824
J Natl Cancer Inst. 2018 Apr 1;110(4):379-389
pubmed: 29106591
Cancer Lett. 2020 Apr 28;476:1-12
pubmed: 32044356
J Neurooncol. 2012 May;108(1):11-27
pubmed: 22270850
Nucleic Acids Res. 2010 May;38(9):2757-74
pubmed: 20044349
J Immunol. 2016 Jan 15;196(2):715-25
pubmed: 26673144
J Cell Physiol. 2020 Oct;235(10):7321-7331
pubmed: 32162312
Cochrane Database Syst Rev. 2019 Aug 05;8:CD013047
pubmed: 31425631
N Engl J Med. 2015 Jun 25;372(26):2481-98
pubmed: 26061751
Aging (Albany NY). 2018 Apr 16;10(4):592-605
pubmed: 29676997
Nat Methods. 2013 Feb;10(2):133-9
pubmed: 23241633
Cancer Sci. 2020 Jul;111(7):2325-2335
pubmed: 32415873
Nat Commun. 2014 Nov 20;5:5274
pubmed: 25409906
Cancer Lett. 2021 Feb 28;499:60-72
pubmed: 33166616
J Transl Med. 2020 Feb 11;18(1):67
pubmed: 32046766
Cancer Res. 2017 Nov 1;77(21):e108-e110
pubmed: 29092952
Front Immunol. 2018 Dec 21;9:2924
pubmed: 30619286
Cancer Lett. 2017 Dec 1;410:158-168
pubmed: 28964783
Nat Rev Genet. 2013 Jul;14(7):496-506
pubmed: 23774734
PLoS One. 2019 May 17;14(5):e0217196
pubmed: 31100099
OMICS. 2012 May;16(5):284-7
pubmed: 22455463
J Neuropathol Exp Neurol. 2005 Jun;64(6):479-89
pubmed: 15977639
Neuro Oncol. 2019 Nov 1;21(Suppl 5):v1-v100
pubmed: 31675094
J Exp Clin Cancer Res. 2013 Aug 29;32:59
pubmed: 23988086
J Clin Invest. 2017 Feb 1;127(2):415-426
pubmed: 28145904
Genome Biol. 2016 Aug 22;17(1):174
pubmed: 27549193
Nat Commun. 2013;4:2612
pubmed: 24113773
EBioMedicine. 2019 Feb;40:318-326
pubmed: 30594555
Acta Neuropathol. 2016 Jun;131(6):803-20
pubmed: 27157931
RNA Biol. 2019 Jun;16(6):785-797
pubmed: 30810468
Neurosurg Focus. 2015 Jan;38(1):E6
pubmed: 25552286