Point-of-care bulk testing for SARS-CoV-2 by combining hybridization capture with improved colorimetric LAMP.
COVID-19
/ diagnosis
COVID-19 Testing
/ methods
Colorimetry
/ methods
Coronavirus Nucleocapsid Proteins
/ genetics
Humans
Molecular Diagnostic Techniques
/ methods
Nucleic Acid Amplification Techniques
/ methods
Nucleic Acid Hybridization
/ methods
Phosphoproteins
/ genetics
Point-of-Care Testing
RNA, Viral
/ genetics
SARS-CoV-2
/ genetics
Sensitivity and Specificity
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
05 03 2021
05 03 2021
Historique:
received:
30
07
2020
accepted:
01
02
2021
entrez:
6
3
2021
pubmed:
7
3
2021
medline:
17
3
2021
Statut:
epublish
Résumé
Efforts to contain the spread of SARS-CoV-2 have spurred the need for reliable, rapid, and cost-effective diagnostic methods which can be applied to large numbers of people. However, current standard protocols for the detection of viral nucleic acids while sensitive, require a high level of automation and sophisticated laboratory equipment to achieve throughputs that allow whole communities to be tested on a regular basis. Here we present Cap-iLAMP (capture and improved loop-mediated isothermal amplification) which combines a hybridization capture-based RNA extraction of gargle lavage samples with an improved colorimetric RT-LAMP assay and smartphone-based color scoring. Cap-iLAMP is compatible with point-of-care testing and enables the detection of SARS-CoV-2 positive samples in less than one hour. In contrast to direct addition of the sample to improved LAMP (iLAMP), Cap-iLAMP prevents false positives and allows single positive samples to be detected in pools of 25 negative samples, reducing the reagent cost per test to ~1 Euro per individual.
Identifiants
pubmed: 33674580
doi: 10.1038/s41467-021-21627-0
pii: 10.1038/s41467-021-21627-0
pmc: PMC7935920
doi:
Substances chimiques
Coronavirus Nucleocapsid Proteins
0
Phosphoproteins
0
RNA, Viral
0
nucleocapsid phosphoprotein, SARS-CoV-2
0
Banques de données
Dryad
['10.5061/dryad.2rbnzs7mk']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1467Références
Anal Biochem. 2015 Mar 15;473:28-33
pubmed: 25575759
Anal Chem. 2015 May 19;87(10):5278-85
pubmed: 25811093
Microbiol Immunol. 2011 Jan;55(1):44-50
pubmed: 21175773
PLoS One. 2020 Jun 12;15(6):e0234682
pubmed: 32530929
Cochrane Database Syst Rev. 2020 Aug 26;8:CD013705
pubmed: 32845525
Theranostics. 2019 Apr 13;9(9):2637-2645
pubmed: 31131058
Nat Med. 2020 May;26(5):672-675
pubmed: 32296168
Front Microbiol. 2020 Nov 13;11:590732
pubmed: 33281787
Sci Rep. 2019 May 14;9(1):7400
pubmed: 31089184
Biotechniques. 2015 Feb 01;58(2):59-68
pubmed: 25652028
Sci Rep. 2019 Mar 14;9(1):4494
pubmed: 30872672
J Virol Methods. 2007 Dec;146(1-2):317-26
pubmed: 17868915
Nucleic Acids Res. 2000 Jun 15;28(12):E63
pubmed: 10871386
Sci Transl Med. 2020 Aug 12;12(556):
pubmed: 32719001
Euro Surveill. 2020 Jan;25(3):
pubmed: 31992387
Mil Med. 2016 May;181(5 Suppl):227-31
pubmed: 27168577
Nat Biotechnol. 2020 Jul;38(7):870-874
pubmed: 32300245
J Virol Methods. 2017 Jun;244:32-38
pubmed: 28242293
Clin Infect Dis. 2020 Dec 17;71(10):2663-2666
pubmed: 32442256
J Appl Microbiol. 2018 Mar;124(3):626-643
pubmed: 29165905
Front Microbiol. 2019 Mar 11;10:418
pubmed: 30915049
Arch Virol. 2018 Apr;163(4):1057-1061
pubmed: 29308543
Clin Infect Dis. 2020 Jul 28;71(15):893-894
pubmed: 32241023
Front Microbiol. 2018 May 29;9:1101
pubmed: 29896174
Acta Trop. 2016 Oct;162:20-26
pubmed: 27288706
PLoS One. 2020 Dec 31;15(12):e0244824
pubmed: 33382830
J Virol Methods. 2013 Jun;190(1-2):4-10
pubmed: 23542058
J Virol Methods. 2017 Aug;246:8-14
pubmed: 28356221
J Clin Microbiol. 2010 Jul;48(7):2330-6
pubmed: 20421440
Lab Chip. 2019 Apr 9;19(8):1397-1405
pubmed: 30847458
Nat Commun. 2021 Mar 5;12(1):1467
pubmed: 33674580