Molecular disruption of DNA polymerase β for platinum sensitisation and synthetic lethality in epithelial ovarian cancers.


Journal

Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562

Informations de publication

Date de publication:
04 2021
Historique:
received: 26 09 2019
accepted: 10 02 2021
revised: 04 02 2021
pubmed: 7 3 2021
medline: 28 10 2022
entrez: 6 3 2021
Statut: ppublish

Résumé

Targeting PARP1 [Poly(ADP-Ribose) Polymerase 1] for synthetic lethality is a new strategy for BRCA germ-line mutated or platinum sensitive ovarian cancers. However, not all patients respond due to intrinsic or acquired resistance to PARP1 inhibitor. Development of alternative synthetic lethality approaches is a high priority. DNA polymerase β (Polβ), a critical player in base excision repair (BER), interacts with PARP1 during DNA repair. Here we show that polβ deficiency is a predictor of platinum sensitivity in human ovarian tumours. Polβ depletion not only increased platinum sensitivity but also reduced invasion, migration and impaired EMT (epithelial to mesenchymal transition) of ovarian cancer cells. Polβ small molecular inhibitors (Pamoic acid and NSC666719) were selectively toxic to BRCA2 deficient cells and associated with double-strand breaks (DSB) accumulation, cell cycle arrest and increased apoptosis. Interestingly, PARG [Poly(ADP-Ribose) Glycohydrolase] inhibitor (PDD00017273) [but not PARP1 inhibitor (Olaparib)] was synthetically lethal in polβ deficient cells. Selective toxicity to PDD00017273 was associated with poly (ADP-ribose) accumulation, reduced nicotinamide adenine dinucleotide (NAD

Identifiants

pubmed: 33674744
doi: 10.1038/s41388-021-01710-y
pii: 10.1038/s41388-021-01710-y
pmc: PMC8032555
doi:

Substances chimiques

Platinum 49DFR088MY
DNA Polymerase beta EC 2.7.7.7

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2496-2508

Références

Moore K, Colombo N, Scambia G, Kim BG, Oaknin A, Friedlander M. et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 2018;379:2495–505.
pubmed: 30345884 doi: 10.1056/NEJMoa1810858
Mirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S, Redondo A, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N. Engl J Med. 2016;375:2154–64.
pubmed: 27717299 doi: 10.1056/NEJMoa1611310
Swisher EM, Lin KK, Oza AM, Scott CL, Giordano H, Sun J, et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol. 2017;18:75–87.
pubmed: 27908594 doi: 10.1016/S1470-2045(16)30559-9
D’Andrea AD. Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair. 2018;7:172–6.
doi: 10.1016/j.dnarep.2018.08.021
Lindahl T. Repair of intrinsic DNA lesions. Mutat Res. 1990;238:305–11.
pubmed: 1692969 doi: 10.1016/0165-1110(90)90022-4
Dianov G, Bischoff C, Piotrowski J, Bohr VA. Repair pathways for processing of 8-oxoguanine in DNA by mammalian cell extracts. J Biol Chem. 1998;273:33811–6.
pubmed: 9837971 doi: 10.1074/jbc.273.50.33811
Frosina G, Fortini P, Rossi O, Carrozzino F, Raspaglio G, Cox LS, et al. Two pathways for base excision repair in mammalian cells. J Biol Chem. 1996;271:9573–8.
pubmed: 8621631 doi: 10.1074/jbc.271.16.9573
Matsumoto Y, Kim K. Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science. 1995;269:699–702.
pubmed: 7624801 doi: 10.1126/science.7624801
Dianov G, Lindahl T. Reconstitution of the DNA base excision-repair pathway. Curr Biol. 1994;4:1069–76.
pubmed: 7535646 doi: 10.1016/S0960-9822(00)00245-1
Dianov GL, Hubscher U. Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res. 2013;41:3483–90.
pubmed: 23408852 pmcid: 3616742 doi: 10.1093/nar/gkt076
Sweasy JB. Fidelity mechanisms of DNA polymerase beta. Prog Nucleic Acid Res Mol Biol. 2003;73:137–69.
pubmed: 12882517 doi: 10.1016/S0079-6603(03)01005-5
Beaufort CM, Helmijr JC, Piskorz AM, Hoogstraat M, Ruigrok-Ritstier K, Besselink N, et al. Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes. PLoS ONE. 2014;9:e103988.
pubmed: 25230021 pmcid: 4167545 doi: 10.1371/journal.pone.0103988
Starcevic D, Dalal S, Sweasy JB. Is there a link between DNA polymerase beta and cancer? Cell Cycle. 2004;3:998–1001.
pubmed: 15280658 doi: 10.4161/cc.3.8.1062
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17:122.
pubmed: 27268795 pmcid: 4893825 doi: 10.1186/s13059-016-0974-4
Oughtred R, Stark C, Breitkreutz BJ, Rust J, Boucher L, Chang C, et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 2019;47:D529–41.
pubmed: 30476227 doi: 10.1093/nar/gky1079
Parlanti E, Locatelli G, Maga G, Dogliotti E. Human base excision repair complex is physically associated to DNA replication and cell cycle regulatory proteins. Nucleic Acids Res. 2007;35:1569–77.
pubmed: 17289756 pmcid: 1865045 doi: 10.1093/nar/gkl1159
Delfini C, Alfani E, De Venezia V, Oberholtzer G, Tomasello C, Eremenko T, et al. Cell-cycle dependence and properties of the HeLa cell DNA polymerase system. Proc Natl Acad Sci USA. 1985;82:2220–4.
pubmed: 3857575 pmcid: 397528 doi: 10.1073/pnas.82.8.2220
Loret N, Denys H, Tummers P, Berx G. The role of epithelial-to-mesenchymal plasticity in ovarian cancer progression and therapy resistance. Cancers. 2019;11:838.
pmcid: 6628067 doi: 10.3390/cancers11060838
Wong SHM, Fang CM, Chuah LH, Leong CO, Ngai SC. E-cadherin: Its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hematol. 2018;121:11–22.
pubmed: 29279096 doi: 10.1016/j.critrevonc.2017.11.010
Blaschuk OW. N-cadherin antagonists as oncology therapeutics. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140039.
pubmed: 25533096 pmcid: 4275908 doi: 10.1098/rstb.2014.0039
Moustakas A, Heldin CH. Mechanisms of TGFbeta-induced epithelial-mesenchymal transition. J Clin Med. 2016;5:63.
pmcid: 4961994 doi: 10.3390/jcm5070063
Farina AR, Mackay AR. Gelatinase B/MMP-9 in Tumour Pathogenesis and Progression. Cancers. 2014;6:240–96.
pubmed: 24473089 pmcid: 3980597 doi: 10.3390/cancers6010240
Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2011;12:68–78.
pubmed: 22193408 pmcid: 4972490 doi: 10.1038/nrc3181
Hazan C, Boudsocq F, Gervais V, Saurel O, Ciais M, Cazaux C, et al. Structural insights on the pamoic acid and the 8 kDa domain of DNA polymerase beta complex: towards the design of higher-affinity inhibitors. BMC Struct Biol. 2008;8:22.
pubmed: 18416825 pmcid: 2375893 doi: 10.1186/1472-6807-8-22
Jaiswal AS, Panda H, Law BK, Sharma J, Jani J, Hromas R, et al. NSC666715 and its analogs inhibit strand-displacement activity of DNA polymerase beta and potentiate temozolomide-induced dna damage, senescence and apoptosis in colorectal cancer cells. PLoS ONE. 2015;10:e0123808.
pubmed: 25933036 pmcid: 4416822 doi: 10.1371/journal.pone.0123808
Jaiswal AS, Banerjee S, Aneja R, Sarkar FH, Ostrov DA, Narayan S. DNA polymerase beta as a novel target for chemotherapeutic intervention of colorectal cancer. PLoS ONE. 2011;6:e16691.
pubmed: 21311763 pmcid: 3032781 doi: 10.1371/journal.pone.0016691
Jaiswal AS, Banerjee S, Panda H, Bulkin CD, Izumi T, Sarkar FH, et al. A novel inhibitor of DNA polymerase beta enhances the ability of temozolomide to impair the growth of colon cancer cells. Mol Cancer Res. 2009;7:1973–83.
pubmed: 19996303 pmcid: 2796282 doi: 10.1158/1541-7786.MCR-09-0309
Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355:1152–8.
pubmed: 28302823 pmcid: 6175050 doi: 10.1126/science.aam7344
Gogola E, Duarte AA, de Ruiter JR, Wiegant WW, Schmid JA, de Bruijn R, et al. Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality. Cancer Cell. 2018;33:1078–93.e1012.
pubmed: 29894693 doi: 10.1016/j.ccell.2018.05.008
Koh DW, Dawson VL, Dawson TM. The road to survival goes through PARG. Cell Cycle. 2005;4:397–9.
pubmed: 15725727 doi: 10.4161/cc.4.3.1559
Min W, Wang ZQ. Poly (ADP-ribose) glycohydrolase (PARG) and its therapeutic potential. Front Biosci. 2009;14:1619–26.
doi: 10.2741/3329
Fathers C, Drayton RM, Solovieva S, Bryant HE. Inhibition of poly(ADP-ribose) glycohydrolase (PARG) specifically kills BRCA2-deficient tumor cells. Cell Cycle. 2012;11:990–7.
pubmed: 22333589 doi: 10.4161/cc.11.5.19482
Gravells P, Grant E, Smith KM, James DI, Bryant HE. Specific killing of DNA damage-response deficient cells with inhibitors of poly(ADP-ribose) glycohydrolase. DNA Repair. 2017;52:81–91.
pubmed: 28254358 pmcid: 5360195 doi: 10.1016/j.dnarep.2017.02.010
Pillay N, Tighe A, Nelson L, Littler S, Coulson-Gilmer C, Bah N, et al. DNA replication vulnerabilities render ovarian cancer cells sensitive to poly(ADP-ribose) glycohydrolase inhibitors. Cancer Cell. 2019;35:519–33.e518.
pubmed: 30889383 pmcid: 6428690 doi: 10.1016/j.ccell.2019.02.004
Andrabi SA, Kim NS, Yu SW, Wang H, Koh DW, Sasaki M, et al. Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci USA. 2006;103:18308–13.
pubmed: 17116882 pmcid: 1838747 doi: 10.1073/pnas.0606526103
Yu SW, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM, et al. Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci USA. 2006;103:18314–9.
pubmed: 17116881 pmcid: 1838748 doi: 10.1073/pnas.0606528103
Lombard DB. Sirtuins at the breaking point: SIRT6 in DNA repair. Aging. 2009;1:12–6.
pubmed: 20157593 pmcid: 2815760 doi: 10.18632/aging.100014
Ying W, Alano CC, Garnier P, Swanson RA. NAD+ as a metabolic link between DNA damage and cell death. J Neurosci Res. 2005;79:216–23.
pubmed: 15562437 doi: 10.1002/jnr.20289
Srivastava DK, Husain I, Arteaga CL, Wilson SH. DNA polymerase beta expression differences in selected human tumors and cell lines. Carcinogenesis. 1999;20:1049–154.
pubmed: 10357787 doi: 10.1093/carcin/20.6.1049
Dong ZM, Zheng NG, Wu JL, Li SK, Wang YL. Difference in expression level and localization of DNA polymerase beta among human esophageal cancer focus, adjacent and corresponding normal tissues. Dis Esophagus. 2006;19:172–6.
pubmed: 16722994 doi: 10.1111/j.1442-2050.2006.00560.x
Khanra K, Panda K, Bhattacharya C, Mitra A, Sarkar R, Banerjee S, et al. Association between newly identified variant form of DNA polymerase beta (Delta 208-304) and ovarian cancer. Cancer Biomark. 2012;11:155–60.
pubmed: 23144153 doi: 10.3233/CBM-2012-00275
Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science. 1994;265:103–6.
pubmed: 8016642 doi: 10.1126/science.8016642
Sobol RW, Wilson SH. Mammalian DNA beta-polymerase in base excision repair of alkylation damage. Prog Nucleic Acid Res Mol Biol. 2001;68:57–74.
pubmed: 11554313 doi: 10.1016/S0079-6603(01)68090-5
Yang J, Parsons J, Nicolay NH, Caporali S, Harrington CF, Singh R, et al. Cells deficient in the base excision repair protein, DNA polymerase beta, are hypersensitive to oxaliplatin chemotherapy. Oncogene. 2010;29:463–8.
pubmed: 19838217 doi: 10.1038/onc.2009.327
Canitrot Y, Cazaux C, Frechet M, Bouayadi K, Lesca C, Salles B, et al. Overexpression of DNA polymerase beta in cell results in a mutator phenotype and a decreased sensitivity to anticancer drugs. Proc Natl Acad Sci USA. 1998;95:12586–90.
pubmed: 9770529 pmcid: 22874 doi: 10.1073/pnas.95.21.12586
Iwatsuki M, Mimori K, Yokobori T, Tanaka F, Tahara K, Inoue H, et al. A platinum agent resistance gene, POLB, is a prognostic indicator in colorectal cancer. J Surg Oncol. 2009;100:261–6.
pubmed: 19330779 doi: 10.1002/jso.21275
Raudenska M, Balvan J, Fojtu M, Gumulec J, Masarik M. Unexpected therapeutic effects of cisplatin. Metallomics. 2019;11:1182–99.
pubmed: 31098602 doi: 10.1039/c9mt00049f
Raudenska M, Kratochvilova M, Vicar T, Gumulec J, Balvan J, Polanska H, et al. Cisplatin enhances cell stiffness and decreases invasiveness rate in prostate cancer cells by actin accumulation. Sci Rep. 2019;9:1660.
pubmed: 30733487 pmcid: 6367361 doi: 10.1038/s41598-018-38199-7
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.
pubmed: 24556840 pmcid: 4240281 doi: 10.1038/nrm3758
Pu H, Horbinski C, Hensley PJ, Matuszak EA, Atkinson T, Kyprianou N. PARP-1 regulates epithelial-mesenchymal transition (EMT) in prostate tumorigenesis. Carcinogenesis. 2014;35:2592–601.
pubmed: 25173886 pmcid: 4216059 doi: 10.1093/carcin/bgu183
Weyemi U, Redon CE, Choudhuri R, Aziz T, Maeda D, Boufraqech M, et al. The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition. Nat Commun. 2016;7:10711.
pubmed: 26876487 pmcid: 4756313 doi: 10.1038/ncomms10711
Fisher AE, Hochegger H, Takeda S, Caldecott KW. Poly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase. Mol Cell Biol. 2007;27:5597–605.
pubmed: 17548475 pmcid: 1952076 doi: 10.1128/MCB.02248-06
Pascal JM, Ellenberger T. The rise and fall of poly(ADP-ribose): an enzymatic perspective. DNA Repair. 2015;32:10–6.
pubmed: 25963443 pmcid: 4522361 doi: 10.1016/j.dnarep.2015.04.008
Croteau DL, Fang EF, Nilsen H, Bohr VA. NAD(+) in DNA repair and mitochondrial maintenance. Cell Cycle. 2017;16:491–2.
pubmed: 28145802 pmcid: 5384578 doi: 10.1080/15384101.2017.1285631
Fouquerel E, Sobol RW. ARTD1 (PARP1) activation and NAD(+) in DNA repair and cell death. DNA Repair. 2014;23:27–32.
pubmed: 25283336 doi: 10.1016/j.dnarep.2014.09.004

Auteurs

Reem Ali (R)

Translational Oncology, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.

Adel Alblihy (A)

Translational Oncology, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.
Medical Center, King Fahad Security College (KFSC), Riyadh, Saudi Arabia.

Islam M Miligy (IM)

Academic Pathology, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.
Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt.

Muslim L Alabdullah (ML)

Translational Oncology, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.
Academic Pathology, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.

Mansour Alsaleem (M)

Academic Pathology, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.

Michael S Toss (MS)

Academic Pathology, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.

Mashael Algethami (M)

Translational Oncology, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.

Tarek Abdel-Fatah (T)

Department of Oncology, Nottingham University Hospitals, Nottingham, UK.

Paul Moseley (P)

Department of Oncology, Nottingham University Hospitals, Nottingham, UK.

Stephen Chan (S)

Department of Oncology, Nottingham University Hospitals, Nottingham, UK.

Nigel P Mongan (NP)

Faculty of medicine and Health Sciences, Centre for Cancer Sciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK.
Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.

Satya Narayan (S)

Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA.

Emad A Rakha (EA)

Academic Pathology, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.

Srinivasan Madhusudan (S)

Translational Oncology, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK. srinivasan.madhusudan@nottingham.ac.uk.
Department of Oncology, Nottingham University Hospitals, Nottingham, UK. srinivasan.madhusudan@nottingham.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH