A comparison of reweighting estimators of average treatment effects in real world populations.
entropy
external validity
propensity
weight estimation
weight trimming
Journal
Pharmaceutical statistics
ISSN: 1539-1612
Titre abrégé: Pharm Stat
Pays: England
ID NLM: 101201192
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
revised:
11
01
2021
received:
01
05
2020
accepted:
05
02
2021
pubmed:
7
3
2021
medline:
7
3
2021
entrez:
6
3
2021
Statut:
ppublish
Résumé
Regulatory agencies typically evaluate the efficacy and safety of new interventions and grant commercial approval based on randomized controlled trials (RCTs). Other major healthcare stakeholders, such as insurance companies and health technology assessment agencies, while basing initial access and reimbursement decisions on RCT results, are also keenly interested in whether results observed in idealized trial settings will translate into comparable outcomes in real world settings-that is, into so-called "real world" effectiveness. Unfortunately, evidence of real world effectiveness for new interventions is not available at the time of initial approval. To bridge this gap, statistical methods are available to extend the estimated treatment effect observed in a RCT to a target population. The generalization is done by weighting the subjects who participated in a RCT so that the weighted trial population resembles a target population. We evaluate a variety of alternative estimation and weight construction procedures using both simulations and a real world data example using two clinical trials of an investigational intervention for Alzheimer's disease. Our results suggest an optimal approach to estimation depends on the characteristics of source and target populations, including degree of selection bias and treatment effect heterogeneity.
Identifiants
pubmed: 33675139
doi: 10.1002/pst.2106
pmc: PMC8359356
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
765-782Informations de copyright
© 2021 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd.
Références
Stat Med. 2020 Jun 30;39(14):1999-2014
pubmed: 32253789
J R Stat Soc Ser A Stat Soc. 2018 Oct;181(4):1193-1209
pubmed: 30555215
Am J Epidemiol. 2010 Jul 1;172(1):107-15
pubmed: 20547574
J R Stat Soc Ser A Stat Soc. 2001 Apr 1;174(2):369-386
pubmed: 24926156
Clin Trials. 2009 Apr;6(2):136-40
pubmed: 19342466
Epidemiology. 2017 Nov;28(6):812-816
pubmed: 28817467
Vital Health Stat 2. 2018 Jan;(177):1-26
pubmed: 29775431
Psychol Methods. 2004 Dec;9(4):403-25
pubmed: 15598095
PLoS One. 2011 Mar 31;6(3):e18174
pubmed: 21483818
Am J Epidemiol. 2017 Jan 1;185(1):65-73
pubmed: 27941068
Stat Sci. 2007;22(4):569-573
pubmed: 18516239
Stat Med. 2011 Nov 10;30(25):2986-3009
pubmed: 21898521
Am J Epidemiol. 2008 Sep 15;168(6):656-64
pubmed: 18682488
Biometrics. 2019 Jun;75(2):685-694
pubmed: 30488513
Am J Epidemiol. 2017 Oct 15;186(8):1010-1014
pubmed: 28535275
Med Decis Making. 2018 Feb;38(2):200-211
pubmed: 28823204
Int J Technol Assess Health Care. 1993 Summer;9(3):440-9
pubmed: 8340208
N Engl J Med. 2014 Jan 23;370(4):311-21
pubmed: 24450890
Stat Med. 2015 Dec 10;34(28):3661-79
pubmed: 26238958
J Clin Epidemiol. 2010 Aug;63(8):826-33
pubmed: 20630332
JAMA. 2004 Jun 9;291(22):2720-6
pubmed: 15187053
Am J Epidemiol. 2010 Oct 1;172(7):843-54
pubmed: 20716704
J Manag Care Spec Pharm. 2017 Mar;23(3):370-381
pubmed: 28230450
Biometrics. 1996 Mar;52(1):249-64
pubmed: 8934595
Pharm Stat. 2021 Jul;20(4):765-782
pubmed: 33675139
Stat Med. 2010 Feb 10;29(3):337-46
pubmed: 19960510