Lysosomal retargeting of Myoferlin mitigates membrane stress to enable pancreatic cancer growth.
Animals
Biomarkers, Tumor
/ genetics
Calcium-Binding Proteins
/ genetics
Cell Line, Tumor
Cell Proliferation
Gene Expression Regulation, Neoplastic
Humans
Intracellular Membranes
/ metabolism
Lysosomes
/ genetics
Membrane Proteins
/ genetics
Mice, Inbred C57BL
Mice, Transgenic
Muscle Proteins
/ genetics
Pancreatic Neoplasms
/ genetics
Prognosis
Signal Transduction
Tumor Burden
Journal
Nature cell biology
ISSN: 1476-4679
Titre abrégé: Nat Cell Biol
Pays: England
ID NLM: 100890575
Informations de publication
Date de publication:
03 2021
03 2021
Historique:
received:
14
08
2020
accepted:
01
02
2021
pubmed:
10
3
2021
medline:
27
4
2021
entrez:
9
3
2021
Statut:
ppublish
Résumé
Lysosomes must maintain the integrity of their limiting membrane to ensure efficient fusion with incoming organelles and degradation of substrates within their lumen. Pancreatic cancer cells upregulate lysosomal biogenesis to enhance nutrient recycling and stress resistance, but it is unknown whether dedicated programmes for maintaining the integrity of the lysosome membrane facilitate pancreatic cancer growth. Using proteomic-based organelle profiling, we identify the Ferlin family plasma membrane repair factor Myoferlin as selectively and highly enriched on the membrane of pancreatic cancer lysosomes. Mechanistically, lysosomal localization of Myoferlin is necessary and sufficient for the maintenance of lysosome health and provides an early acting protective system against membrane damage that is independent of the endosomal sorting complex required for transport (ESCRT)-mediated repair network. Myoferlin is upregulated in human pancreatic cancer, predicts poor survival and its ablation severely impairs lysosome function and tumour growth in vivo. Thus, retargeting of plasma membrane repair factors enhances the pro-oncogenic activities of the lysosome.
Identifiants
pubmed: 33686253
doi: 10.1038/s41556-021-00644-7
pii: 10.1038/s41556-021-00644-7
pmc: PMC9446896
mid: NIHMS1828648
doi:
Substances chimiques
Biomarkers, Tumor
0
Calcium-Binding Proteins
0
MYOF protein, human
0
Membrane Proteins
0
Muscle Proteins
0
myoferlin protein, mouse
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
232-242Subventions
Organisme : NCI NIH HHS
ID : DP2 CA216364
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA260249
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM127763
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM130995
Pays : United States
Références
Lawrence, R. E. & Zoncu, R. The lysosome as a cellular centre for signalling, metabolism and quality control. Nat. Cell Biol. 21, 133–142 (2019).
pubmed: 30602725
doi: 10.1038/s41556-018-0244-7
Perera, R. M. & Zoncu, R. The lysosome as a regulatory hub. Annu. Rev. Cell Dev. Biol. 32, 223–253 (2016).
pubmed: 27501449
doi: 10.1146/annurev-cellbio-111315-125125
Ballabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 21, 101–118 (2020).
pubmed: 31768005
doi: 10.1038/s41580-019-0185-4
Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637 (2013).
pubmed: 23665962
pmcid: 3810415
doi: 10.1038/nature12138
Kamphorst, J. J. et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 75, 544–553 (2015).
pubmed: 25644265
pmcid: 4316379
doi: 10.1158/0008-5472.CAN-14-2211
Perera, R. M. et al. Transcriptional control of autophagy–lysosome function drives pancreatic cancer metabolism. Nature 524, 361–365 (2015).
pubmed: 26168401
pmcid: 5086585
doi: 10.1038/nature14587
Yang, A. et al. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 4, 905–913 (2014).
pubmed: 24875860
pmcid: 4125497
doi: 10.1158/2159-8290.CD-14-0362
Yang, S. et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25, 717–729 (2011).
pubmed: 21406549
pmcid: 3070934
doi: 10.1101/gad.2016111
Yamamoto, K. et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581, 100–105 (2020).
pubmed: 32376951
pmcid: 7296553
doi: 10.1038/s41586-020-2229-5
Perera, R. M., Di Malta, C. & Ballabio, A. MiT/TFE family of transcription factors, lysosomes, and cancer. Annu Rev. Cancer Biol. 3, 203–222 (2019).
pubmed: 31650096
doi: 10.1146/annurev-cancerbio-030518-055835
Papadopoulos, C., Kravic, B. & Meyer, H. Repair or lysophagy: dealing with damaged Lysosomes. J. Mol. Biol. 432, 231–239 (2020).
pubmed: 31449799
doi: 10.1016/j.jmb.2019.08.010
Vietri, M., Radulovic, M. & Stenmark, H. The many functions of ESCRTs. Nat. Rev. Mol. Cell Biol. 21, 25–42 (2020).
pubmed: 31705132
doi: 10.1038/s41580-019-0177-4
Radulovic, M. et al. ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival. EMBO J. https://doi.org/10.15252/embj.201899753 (2018).
Skowyra, M. L., Schlesinger, P. H., Naismith, T. V. & Hanson, P. I. Triggered recruitment of ESCRT machinery promotes endolysosomal repair. Science https://doi.org/10.1126/science.aar5078 (2018).
Hung, Y. H., Chen, L. M., Yang, J. Y. & Yang, W. Y. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat. Commun. 4, 2111 (2013).
pubmed: 23817530
doi: 10.1038/ncomms3111
Jia, J. et al. Galectins control mTOR in response to endomembrane damage. Mol. Cell 70, 120–135 (2018).
pubmed: 29625033
pmcid: 5911935
doi: 10.1016/j.molcel.2018.03.009
Maejima, I. et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32, 2336–2347 (2013).
pubmed: 23921551
pmcid: 3770333
doi: 10.1038/emboj.2013.171
Abu-Remaileh, M. et al. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science 358, 807–813 (2017).
pubmed: 29074583
pmcid: 5704967
doi: 10.1126/science.aan6298
Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H
pubmed: 22053050
pmcid: 3211112
doi: 10.1126/science.1207056
Bansal, D. & Campbell, K. P. Dysferlin and the plasma membrane repair in muscular dystrophy. Trends Cell Biol. 14, 206–213 (2004).
pubmed: 15066638
doi: 10.1016/j.tcb.2004.03.001
Bansal, D. et al. Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 423, 168–172 (2003).
pubmed: 12736685
doi: 10.1038/nature01573
Davis, D. B., Delmonte, A. J., Ly, C. T. & McNally, E. M. Myoferlin, a candidate gene and potential modifier of muscular dystrophy. Hum. Mol. Genet. 9, 217–226 (2000).
pubmed: 10607832
doi: 10.1093/hmg/9.2.217
Doherty, K. R. et al. Normal myoblast fusion requires myoferlin. Development 132, 5565–5575 (2005).
pubmed: 16280346
doi: 10.1242/dev.02155
Lek, A., Evesson, F. J., Sutton, R. B., North, K. N. & Cooper, S. T. Ferlins: regulators of vesicle fusion for auditory neurotransmission, receptor trafficking and membrane repair. Traffic 13, 185–194 (2012).
pubmed: 21838746
doi: 10.1111/j.1600-0854.2011.01267.x
Bashir, R. et al. A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat. Genet. 20, 37–42 (1998).
pubmed: 9731527
doi: 10.1038/1689
Liu, J. et al. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat. Genet. 20, 31–36 (1998).
pubmed: 9731526
doi: 10.1038/1682
Repnik, U. et al. L-leucyl-L-leucine methyl ester does not release cysteine cathepsins to the cytosol but inactivates them in transiently permeabilized lysosomes. J. Cell Sci. 130, 3124–3140 (2017).
pubmed: 28754686
Mercier, V. et al. Endosomal membrane tension regulates ESCRT-III-dependent intra-lumenal vesicle formation. Nat. Cell Biol. 22, 947–959 (2020).
pubmed: 32753669
pmcid: 7612185
doi: 10.1038/s41556-020-0546-4
Chauhan, S. et al. TRIMs and galectins globally cooperate and TRIM16 and Galectin-3 co-direct autophagy in endomembrane damage homeostasis. Dev. Cell 39, 13–27 (2016).
pubmed: 27693506
pmcid: 5104201
doi: 10.1016/j.devcel.2016.08.003
Thurston, T. L., Wandel, M. P., von Muhlinen, N., Foeglein, A. & Randow, F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482, 414–418 (2012).
pubmed: 22246324
pmcid: 3343631
doi: 10.1038/nature10744
Aits, S. et al. Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay. Autophagy 11, 1408–1424 (2015).
pubmed: 26114578
pmcid: 4590643
doi: 10.1080/15548627.2015.1063871
Kilpatrick, B. S., Eden, E. R., Hockey, L. N., Futter, C. E. & Patel, S. Methods for monitoring lysosomal morphology. Methods Cell. Biol. 126, 1–19 (2015).
pubmed: 25665438
doi: 10.1016/bs.mcb.2014.10.018
Platt, F. M., Boland, B. & van der Spoel, A. C. Lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J. Cell Biol. 199, 723–734 (2012).
pubmed: 23185029
pmcid: 3514785
doi: 10.1083/jcb.201208152
Mauthe, M. et al. Chloroquine inhibits autophagic flux by decreasing autophagosome–lysosome fusion. Autophagy 14, 1435–1455 (2018).
pubmed: 29940786
pmcid: 6103682
doi: 10.1080/15548627.2018.1474314
Colom, A. et al. A fluorescent membrane tension probe. Nat. Chem. 10, 1118–1125 (2018).
pubmed: 30150727
pmcid: 6197433
doi: 10.1038/s41557-018-0127-3
Goujon, A. et al. Mechanosensitive fluorescent probes to image membrane tension in mitochondria, endoplasmic reticulum, and lysosomes. J. Am. Chem. Soc. 141, 3380–3384 (2019).
pubmed: 30744381
doi: 10.1021/jacs.8b13189
Lawrence, R. E. et al. A nutrient-induced affinity switch controls mTORC1 activation by its Rag GTPase–Ragulator lysosomal scaffold. Nat. Cell Biol. 20, 1052–1063 (2018).
pubmed: 30061680
pmcid: 6279252
doi: 10.1038/s41556-018-0148-6
Liberles, S. D., Diver, S. T., Austin, D. J. & Schreiber, S. L. Inducible gene expression and protein translocation using nontoxic ligands identified by a mammalian three-hybrid screen. Proc. Natl Acad. Sci. USA 94, 7825–7830 (1997).
pubmed: 9223271
pmcid: 21513
doi: 10.1073/pnas.94.15.7825
Davis, D. B., Doherty, K. R., Delmonte, A. J. & McNally, E. M. Calcium-sensitive phospholipid binding properties of normal and mutant ferlin C2 domains. J. Biol. Chem. 277, 22883–22888 (2002).
pubmed: 11959863
doi: 10.1074/jbc.M201858200
Marty, N. J., Holman, C. L., Abdullah, N. & Johnson, C. P. The C2 domains of otoferlin, dysferlin, and myoferlin alter the packing of lipid bilayers. Biochemistry 52, 5585–5592 (2013).
pubmed: 23859474
doi: 10.1021/bi400432f
Doherty, K. R. et al. The endocytic recycling protein EHD2 interacts with myoferlin to regulate myoblast fusion. J. Biol. Chem. 283, 20252–20260 (2008).
pubmed: 18502764
pmcid: 2459265
doi: 10.1074/jbc.M802306200
Lee, J. J. et al. Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc. Natl Acad. Sci. USA 111, E3091–E3100 (2014).
pubmed: 25024225
pmcid: 4121834
doi: 10.1073/pnas.1411679111
Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).
pubmed: 14706336
doi: 10.1016/S1535-6108(03)00309-X
Weber, R. A. et al. Maintaining iron homeostasis is the key role of lysosomal acidity for cell proliferation. Mol. Cell 77, 645–655 e647 (2020).
pubmed: 31983508
pmcid: 7176020
doi: 10.1016/j.molcel.2020.01.003
Yambire, K. F. et al. Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo. eLife https://doi.org/10.7554/eLife.51031 (2019).
Xu, H. & Ren, D. Lysosomal physiology. Annu Rev. Physiol. 77, 57–80 (2015).
pubmed: 25668017
pmcid: 4524569
doi: 10.1146/annurev-physiol-021014-071649
Dong, R. et al. Endosome–ER contacts control actin nucleation and retromer function through VAP-dependent regulation of PI4P. Cell 166, 408–423 (2016).
pubmed: 27419871
pmcid: 4963242
doi: 10.1016/j.cell.2016.06.037
Lim, C. Y. et al. ER–lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann–Pick type C. Nat. Cell Biol. 21, 1206–1218 (2019).
pubmed: 31548609
pmcid: 6936960
doi: 10.1038/s41556-019-0391-5
Rademaker, G. et al. Myoferlin controls mitochondrial structure and activity in pancreatic ductal adenocarcinoma, and affects tumor aggressiveness. Oncogene 37, 4398–4412 (2018).
pubmed: 29720728
pmcid: 6085282
doi: 10.1038/s41388-018-0287-z
Rademaker, G. et al. Human colon cancer cells highly express myoferlin to maintain a fit mitochondrial network and escape p53-driven apoptosis. Oncogenesis 8, 21 (2019).
pubmed: 30850580
pmcid: 6408501
doi: 10.1038/s41389-019-0130-6
Petersen, N. H. et al. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. Cancer Cell 24, 379–393 (2013).
pubmed: 24029234
doi: 10.1016/j.ccr.2013.08.003
Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists. Nucleic Acids Res. 47, W191–W198 (2019).
pubmed: 31066453
pmcid: 6602461
doi: 10.1093/nar/gkz369
Liang, X. et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 208, 44–53 (2015).
pubmed: 26003884
doi: 10.1016/j.jbiotec.2015.04.024
Manuyakorn, A. et al. Cellular histone modification patterns predict prognosis and treatment response in resectable pancreatic adenocarcinoma: results from RTOG 9704. J. Clin. Oncol. 28, 1358–1365 (2010).
pubmed: 20142597
pmcid: 2834495
doi: 10.1200/JCO.2009.24.5639