Time-lapse imaging of human embryos fertilized with testicular sperm reveals an impact on the first embryonic cell cycle.
assisted reproductive technology
fertilization in vitro
gamete biology
infertility
intracytoplasmic sperm injections
preimplantation embryo development
sperm maturation
testicular spermatozoa
time-lapse imaging
Journal
Biology of reproduction
ISSN: 1529-7268
Titre abrégé: Biol Reprod
Pays: United States
ID NLM: 0207224
Informations de publication
Date de publication:
04 06 2021
04 06 2021
Historique:
received:
24
12
2020
revised:
08
02
2021
accepted:
18
02
2021
pubmed:
11
3
2021
medline:
4
1
2022
entrez:
10
3
2021
Statut:
ppublish
Résumé
Testicular sperm is increasingly used during in vitro fertilization treatment. Testicular sperm has the ability to fertilize the oocyte after intracytoplasmic sperm injection (ICSI), but they have not undergone maturation during epididymal transport. Testicular sperm differs from ejaculated sperm in terms of chromatin maturity, incidence of DNA damage, and RNA content. It is not fully understood what the biological impact is of using testicular sperm, on fertilization, preimplantation embryo development, and postimplantation development. Our goal was to investigate differences in human preimplantation embryo development after ICSI using testicular sperm (TESE-ICSI) and ejaculated sperm. We used time-lapse embryo culture to study these possible differences. Embryos (n = 639) originating from 208 couples undergoing TESE-ICSI treatment were studied and compared to embryos (n = 866) originating from 243 couples undergoing ICSI treatment with ejaculated sperm. Using statistical analysis with linear mixed models, we observed that pronuclei appeared 0.55 h earlier in TESE-ICSI embryos, after which the pronuclear stage lasted 0.55 h longer. Also, significantly more TESE-ICSI embryos showed direct unequal cleavage from the 1-cell stage to the 3-cell stage. TESE-ICSI embryos proceeded faster through the cleavage divisions to the 5- and the 6-cell stage, but this effect disappeared when we adjusted our model for maternal factors. In conclusion, sperm origin affects embryo development during the first embryonic cell cycle, but not developmental kinetics to the 8-cell stage. Our results provide insight into the biological differences between testicular and ejaculated sperm and their impact during human fertilization.
Identifiants
pubmed: 33690817
pii: 6158546
doi: 10.1093/biolre/ioab031
pmc: PMC8181962
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1218-1227Informations de copyright
© The Author(s) 2021. Published by Oxford University Press on behalf of Society for the Study of Reproduction.
Références
Hum Reprod Update. 2007 Nov-Dec;13(6):539-49
pubmed: 17895238
J Assist Reprod Genet. 2018 Jul;35(7):1339-1348
pubmed: 29785530
Cold Spring Harb Perspect Biol. 2015 Feb 02;7(2):a015800
pubmed: 25646378
J Assist Reprod Genet. 2020 Mar;37(3):629-640
pubmed: 31901112
Fertil Steril. 2017 Sep;108(3):456-467.e1
pubmed: 28865546
PLoS One. 2013;8(2):e56385
pubmed: 23431372
Reprod Biomed Online. 2013 Oct;27(4):367-75
pubmed: 23953584
Nat Commun. 2018 May 8;9(1):1819
pubmed: 29739935
Fertil Steril. 2003 Jan;79(1):30-8
pubmed: 12524060
Hum Reprod. 2020 Jan 1;35(1):24-31
pubmed: 31960907
Reprod Biomed Online. 2012 Oct;25(4):382-9
pubmed: 22877941
Andrology. 2017 Mar;5(2):204-218
pubmed: 28297559
J Assist Reprod Genet. 2017 Jun;34(6):733-740
pubmed: 28455755
J Assist Reprod Genet. 2012 Sep;29(9):891-900
pubmed: 22714134
Reproduction. 2016 Dec;152(6):R211-R222
pubmed: 27601712
Fertil Steril. 2019 May;111(5):873-880
pubmed: 31029241
Hum Reprod. 1995 Jan;10(1):148-52
pubmed: 7745045
Clin Exp Reprod Med. 2019 Jun;46(2):67-75
pubmed: 31181874
J Assist Reprod Genet. 2018 Jul;35(7):1247-1257
pubmed: 29785532
Nature. 2009 Jul 9;460(7252):278-82
pubmed: 19506557
Hum Reprod. 2013 Mar;28(3):794-800
pubmed: 23293223
Nat Genet. 2007 Feb;39(2):251-8
pubmed: 17237782
Fertil Steril. 2014 Feb;101(2):344-9
pubmed: 24345355
Andrology. 2021 Mar;9(2):632-639
pubmed: 33251758
Biol Reprod. 1991 Apr;44(4):569-74
pubmed: 2043729
Int J Mol Sci. 2015 Dec 16;16(12):29923-35
pubmed: 26694360
J Assist Reprod Genet. 2018 Jul;35(7):1229-1237
pubmed: 29700730
Fertil Steril. 2013 Mar 1;99(3):738-744.e4
pubmed: 23245683
Genes (Basel). 2019 Jan 14;10(1):
pubmed: 30646585
Front Cell Dev Biol. 2019 Oct 09;7:215
pubmed: 31681757
Reprod Biomed Online. 2009 Jan;18(1):61-6
pubmed: 19146770
Fertil Steril. 1994 Sep;62(3):639-41
pubmed: 8062963
Fertil Steril. 2000 Sep;74(3):450-3
pubmed: 10973636
Hum Reprod. 1995 Jun;10(6):1457-60
pubmed: 7593514
Fertil Steril. 2003 Mar;79(3):529-33
pubmed: 12620435
Int J Androl. 2004 Jun;27(3):140-6
pubmed: 15139968
Hum Reprod. 2011 Jun;26(6):1270-83
pubmed: 21502182
Curr Biol. 2015 Nov 16;25(22):2956-63
pubmed: 26480844
Hum Reprod. 2014 Dec;29(12):2650-60
pubmed: 25344070
Andrologia. 2018 Oct;50(8):e13061
pubmed: 29882361
Hum Reprod. 1995 Oct;10 Suppl 1:115-9
pubmed: 8592027
Cell Mol Life Sci. 2018 Aug;75(15):2777-2792
pubmed: 29748894
Biol Reprod. 2006 Aug;75(2):252-60
pubmed: 16687647
Adv Exp Med Biol. 2019;1166:149-167
pubmed: 31301051
Hum Reprod Update. 2016 Sep;22(5):574-87
pubmed: 27307387
Hum Reprod. 2018 Jan 1;33(1):23-31
pubmed: 29149327
Hum Reprod. 2004 Feb;19(2):262-5
pubmed: 14747164
Dev Cell. 2020 Dec 21;55(6):675-676
pubmed: 33352141
Fertil Steril. 2019 Sep;112(3):426-437
pubmed: 31446902
J Assist Reprod Genet. 2015 Sep;32(9):1325-32
pubmed: 26109332
Nat Commun. 2018 Sep 24;9(1):3885
pubmed: 30250204
Andrologia. 2019 May;51(4):e13217
pubmed: 30569603
Hum Reprod. 2016 Feb;31(2):324-31
pubmed: 26637491
Reprod Biomed Online. 2003 Oct-Nov;7(4):449-55
pubmed: 14656407
Sci Rep. 2016 Aug 18;6:31816
pubmed: 27534805
Front Cell Dev Biol. 2019 Dec 17;7:346
pubmed: 31921857
Fertil Steril. 2009 Nov;92(5):1638-45
pubmed: 19006791
J Assist Reprod Genet. 1998 Mar;15(3):129-39
pubmed: 9547689
Hum Reprod. 1999 Mar;14(3):741-8
pubmed: 10221707
Nat Rev Endocrinol. 2019 Aug;15(8):489-498
pubmed: 31235802
Experientia. 1979 Feb 15;35(2):191-2
pubmed: 421827
Dev Cell. 2018 Aug 20;46(4):470-480.e3
pubmed: 30057276
J Androl. 1994 Nov-Dec;15 Suppl:23S-27S
pubmed: 7721672
J Cell Biol. 1981 Aug;90(2):351-61
pubmed: 6793597
Dev Cell. 2019 Jul 1;50(1):5-6
pubmed: 31265812
Reprod Sci. 2019 Dec;26(12):1575-1581
pubmed: 30717629
Andrology. 2021 Mar;9(2):599-609
pubmed: 33207074
Hum Reprod. 2006 Feb;21(2):344-51
pubmed: 16239317
Hum Reprod. 2000 Jun;15(6):1383-8
pubmed: 10831574
PLoS Genet. 2016 Oct 7;12(10):e1006358
pubmed: 27716834
Hum Mol Genet. 2008 Jul 1;17(13):1922-37
pubmed: 18353795
Fertil Steril. 2012 Dec;98(6):1458-63
pubmed: 22925687
Hum Mol Genet. 2018 Jul 15;27(14):2573-2585
pubmed: 29688390
Nat Commun. 2014 Dec 18;5:5868
pubmed: 25519718
Lancet. 1993 Oct 2;342(8875):864
pubmed: 8104288
Fertil Steril. 2013 Jun;99(7):1944-50
pubmed: 23465820
Nucleic Acids Res. 2014 Jun;42(11):7290-304
pubmed: 24838567
Front Cell Dev Biol. 2019 Oct 01;7:188
pubmed: 31632960
Hum Reprod. 2015 Aug;30(8):1790-6
pubmed: 26082482
Eur J Obstet Gynecol Reprod Biol. 2013 Jun;168(2):167-72
pubmed: 23351671
Hum Reprod. 1993 Aug;8(8):1339-40
pubmed: 8408540