Stable Anatomy Detection in Multimodal Imaging Through Sparse Group Regularization: A Comparative Study of Iron Accumulation in the Aging Brain.
ADMM
geometric regularization
group lasso
joint region
lasso
multiple sclerosis
sparse detection
total variation
Journal
Frontiers in human neuroscience
ISSN: 1662-5161
Titre abrégé: Front Hum Neurosci
Pays: Switzerland
ID NLM: 101477954
Informations de publication
Date de publication:
2021
2021
Historique:
received:
14
12
2020
accepted:
28
01
2021
entrez:
12
3
2021
pubmed:
13
3
2021
medline:
13
3
2021
Statut:
epublish
Résumé
Multimodal neuroimaging provides a rich source of data for identifying brain regions associated with disease progression and aging. However, present studies still typically analyze modalities separately or aggregate voxel-wise measurements and analyses to the structural level, thus reducing statistical power. As a central example, previous works have used two quantitative MRI parameters-R2* and quantitative susceptibility (QS)-to study changes in iron associated with aging in healthy and multiple sclerosis subjects, but failed to simultaneously account for both. In this article, we propose a unified framework that combines information from multiple imaging modalities and regularizes estimates for increased interpretability, generalizability, and stability. Our work focuses on joint region detection problems where overlap between effect supports across modalities is encouraged but not strictly enforced. To achieve this, we combine
Identifiants
pubmed: 33708081
doi: 10.3389/fnhum.2021.641616
pmc: PMC7940836
doi:
Types de publication
Journal Article
Langues
eng
Pagination
641616Informations de copyright
Copyright © 2021 Pietrosanu, Zhang, Seres, Elkady, Wilman, Kong and Cobzas.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Neuroimage. 2000 Jun;11(6 Pt 1):805-21
pubmed: 10860804
Neuroimage. 2016 Sep;138:43-63
pubmed: 27181761
Neuroimage. 2010 Jun;51(2):752-64
pubmed: 20188193
Inf Process Med Imaging. 2013;23:86-97
pubmed: 24683960
Neuroimage. 2004 Sep;23(1):17-20
pubmed: 15325347
Neuroimage. 2013 May 15;72:304-21
pubmed: 23298747
IEEE Trans Med Imaging. 2012 Jan;31(1):51-69
pubmed: 21791408
Neuroimage. 2009 Oct 15;48(1):29-36
pubmed: 19540925
J Magn Reson Imaging. 2017 Nov;46(5):1464-1473
pubmed: 28301067
J Neurocytol. 2002 Sep-Nov;31(8-9):581-93
pubmed: 14501200
Nature. 2016 Nov 09;539(7628):180-186
pubmed: 27830812
Neuroimage. 2018 Oct 1;179:117-133
pubmed: 29890327
Comput Stat Data Anal. 2016 Mar;95:222-239
pubmed: 28133403
Neuroimage. 2012 Feb 1;59(3):2625-35
pubmed: 21925274
Mult Scler Relat Disord. 2019 Aug;33:107-115
pubmed: 31181540
Magn Reson Med. 2015 Jan;73(1):82-101
pubmed: 25044035
IEEE Trans Med Imaging. 2012 Dec;31(12):2290-306
pubmed: 23008245
Entropy (Basel). 2020 Nov 05;22(11):
pubmed: 33287025
Neuroimage. 2015 Oct 1;119:89-102
pubmed: 26095090
Hum Brain Mapp. 2018 Oct;39(10):4007-4017
pubmed: 29923266
Magn Reson Med. 2014 Mar;71(3):1151-7
pubmed: 23666788
J Neurochem. 1958 Oct;3(1):41-51
pubmed: 13611557
J Neurosci. 2016 Jan 13;36(2):364-74
pubmed: 26758829
IEEE Trans Med Imaging. 2011 Jul;30(7):1328-40
pubmed: 21317080
Neuroimage. 2019 Feb 1;186:308-320
pubmed: 30445148
Neuroimage. 2012 Jan 16;59(2):1413-9
pubmed: 21893208
IEEE Trans Med Imaging. 2018 Jan;37(1):128-137
pubmed: 28783628
IEEE Trans Med Imaging. 2007 Jan;26(1):93-105
pubmed: 17243588
Neuroimage. 2014 Aug 1;96:183-202
pubmed: 24704268
IEEE Trans Pattern Anal Mach Intell. 2005 Jun;27(6):957-68
pubmed: 15943426
Radiology. 2014 Jan;270(1):186-96
pubmed: 23925273
J Magn Reson Imaging. 2010 Sep;32(3):561-76
pubmed: 20815053