Quantifying mechanical loading and elastic strain energy of the human Achilles tendon during walking and running.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
12 03 2021
12 03 2021
Historique:
received:
10
11
2020
accepted:
19
02
2021
entrez:
13
3
2021
pubmed:
14
3
2021
medline:
15
12
2021
Statut:
epublish
Résumé
The purpose of the current study was to assess in vivo Achilles tendon (AT) mechanical loading and strain energy during locomotion. We measured AT length considering its curve-path shape. Eleven participants walked at 1.4 m/s and ran at 2.5 m/s and 3.5 m/s on a treadmill. The AT length was defined as the distance between its origin at the gastrocnemius medialis myotendinous junction (MTJ) and the calcaneal insertion. The MTJ was tracked using ultrasonography and projected to the reconstructed skin surface to account for its misalignment. Skin-to-bone displacements were assessed during a passive rotation (5°/s) of the ankle joint. Force and strain energy of the AT during locomotion were calculated by fitting a quadratic function to the experimentally measured tendon force-length curve obtained from maximum voluntary isometric contractions. The maximum AT strain and force were affected by speed (p < 0.05, ranging from 4.0 to 4.9% strain and 1.989 to 2.556 kN), yet insufficient in magnitude to be considered as an effective stimulus for tendon adaptation. Besides the important tendon energy recoil during the propulsion phase (7.8 to 11.3 J), we found a recoil of elastic strain energy at the beginning of the stance phase of running (70-77 ms after touch down) between 1.7 ± 0.6 and 1.9 ± 1.1 J, which might be functionally relevant for running efficiency.
Identifiants
pubmed: 33712639
doi: 10.1038/s41598-021-84847-w
pii: 10.1038/s41598-021-84847-w
pmc: PMC7955091
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5830Références
Lichtwark, G. & Wilson, A. In vivo mechanical properties of the human Achilles tendon during one-legged hopping. J. Exp. Biol. 208, 4715–4725 (2005).
pubmed: 16326953
doi: 10.1242/jeb.01950
Dick, T. J. & Wakeling, J. M. Shifting gears: Dynamic muscle shape changes and force-velocity behavior in the medial gastrocnemius. J. Appl. Physiol. 123, 1433–1442 (2017).
pubmed: 28860176
pmcid: 5814684
doi: 10.1152/japplphysiol.01050.2016
Kümmel, J., Cronin, N. J., Kramer, A., Avela, J. & Gruber, M. Conditioning hops increase triceps surae muscle force and Achilles tendon strain energy in the stretch-shortening cycle. Scand. J. Med. Sci. Sports 28, 126–137 (2018).
pubmed: 28263394
doi: 10.1111/sms.12870
Ishikawa, M., Komi, P. V., Grey, M. J., Lepola, V. & Bruggemann, G.-P. Muscle-tendon interaction and elastic energy usage in human walking. J. Appl. Physiol. 99, 603–608 (2005).
pubmed: 15845776
doi: 10.1152/japplphysiol.00189.2005
Lai, A., Schache, A. G., Lin, Y.-C. & Pandy, M. G. Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed. J. Exp. Biol. 217, 3159–3168 (2014).
pubmed: 24948642
Monte, A., Baltzopoulos, V., Maganaris, C. N. & Zamparo, P. Gastrocnemius Medialis and Vastus Lateralis in vivo muscle‐tendon behavior during running at increasing speeds. Scand. J. Med. Sci. Sports. 30 (7):1163–1176 (2020).
Lichtwark, G., Bougoulias, K. & Wilson, A. Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. J. Biomech. 40, 157–164 (2007).
pubmed: 16364330
doi: 10.1016/j.jbiomech.2005.10.035
Lai, A. et al. In vivo behavior of the human soleus muscle with increasing walking and running speeds. J. Appl. Physiol. 118, 1266–1275 (2015).
pubmed: 25814636
doi: 10.1152/japplphysiol.00128.2015
Lai, A. K., Lichtwark, G. A., Schache, A. G. & Pandy, M. G. Differences in in vivo muscle fascicle and tendinous tissue behavior between the ankle plantarflexors during running. Scand. J. Med. Sci. Sports 28, 1828–1836 (2018).
pubmed: 29603434
doi: 10.1111/sms.13089
Almonroeder, T., Willson, J. D. & Kernozek, T. W. The effect of foot strike pattern on Achilles tendon load during running. Ann. Biomed. Eng. 41, 1758–1766 (2013).
pubmed: 23640524
doi: 10.1007/s10439-013-0819-1
Werkhausen, A., Cronin, N. J., Albracht, K., Bojsen-Møller, J. & Seynnes, O. R. Distinct muscle-tendon interaction during running at different speeds and in different loading conditions. J. Appl. Physiol. 127, 246–253 (2019).
pubmed: 31070955
doi: 10.1152/japplphysiol.00710.2018
Giddings, V. L., Beaupre, G. S., Whalen, R. T. & Carter, D. R. Calcaneal loading during walking and running. Med. Sci. Sports Exerc. 32, 627–634 (2000).
pubmed: 10731005
doi: 10.1097/00005768-200003000-00012
Bohm, S., Mersmann, F. & Arampatzis, A. Human tendon adaptation in response to mechanical loading: A systematic review and meta-analysis of exercise intervention studies on healthy adults. Sports medicine-open 1, 7 (2015).
pubmed: 27747846
pmcid: 4532714
doi: 10.1186/s40798-015-0009-9
Wiesinger, H.-P., Kösters, A., Müller, E. & Seynnes, O. R. Effects of increased loading on in vivo tendon properties: A systematic review. Med. Sci. Sports Exerc. 47, 1885 (2015).
pubmed: 25563908
pmcid: 4535734
doi: 10.1249/MSS.0000000000000603
Wang, T. et al. Programmable mechanical stimulation influences tendon homeostasis in a bioreactor system. Biotechnol. Bioeng. 110, 1495–1507 (2013).
pubmed: 23242991
doi: 10.1002/bit.24809
Arnoczky, S. P. et al. Activation of stress-activated protein kinases (SAPK) in tendon cells following cyclic strain: The effects of strain frequency, strain magnitude, and cytosolic calcium. J. Orthop. Res. 20, 947–952 (2002).
pubmed: 12382958
doi: 10.1016/S0736-0266(02)00038-4
Arampatzis, A., Karamanidis, K. & Albracht, K. Adaptational responses of the human Achilles tendon by modulation of the applied cyclic strain magnitude. J. Exp. Biol. 210, 2743–2753 (2007).
pubmed: 17644689
doi: 10.1242/jeb.003814
Arampatzis, A., Peper, A., Bierbaum, S. & Albracht, K. Plasticity of human Achilles tendon mechanical and morphological properties in response to cyclic strain. J. Biomech. 43, 3073–3079 (2010).
pubmed: 20863501
doi: 10.1016/j.jbiomech.2010.08.014
Bohm, S., Mersmann, F., Tettke, M., Kraft, M. & Arampatzis, A. Human Achilles tendon plasticity in response to cyclic strain: Effect of rate and duration. J. Exp. Biol. 217, 4010–4017 (2014).
pubmed: 25267851
Arampatzis, A., Karamanidis, K., Morey-Klapsing, G., De Monte, G. & Stafilidis, S. Mechanical properties of the triceps surae tendon and aponeurosis in relation to intensity of sport activity. J. Biomech. 40, 1946–1952 (2007).
pubmed: 17101142
doi: 10.1016/j.jbiomech.2006.09.005
Karamanidis, K. & Arampatzis, A. Mechanical and morphological properties of different muscle–tendon units in the lower extremity and running mechanics: Effect of aging and physical activity. J. Exp. Biol. 208, 3907–3923 (2005).
pubmed: 16215218
doi: 10.1242/jeb.01830
Kubo, K. et al. Effects of mechanical properties of muscle and tendon on performance in long distance runners. Eur. J. Appl. Physiol. 110, 507–514 (2010).
pubmed: 20535616
doi: 10.1007/s00421-010-1528-1
Wiesinger, H.-P., Rieder, F., Kösters, A., Müller, E. & Seynnes, O. R. Are sport-specific profiles of tendon stiffness and cross-sectional area determined by structural or functional integrity?. PLoS ONE 11, e0158441 (2016).
pubmed: 27362657
pmcid: 4928785
doi: 10.1371/journal.pone.0158441
Hansen, P., Aagaard, P., Kjaer, M., Larsson, B. & Magnusson, S. P. Effect of habitual running on human Achilles tendon load-deformation properties and cross-sectional area. J. Appl. Physiol. 95, 2375–2380 (2003).
pubmed: 12937029
doi: 10.1152/japplphysiol.00503.2003
Lichtwark, G. & Wilson, A. Interactions between the human gastrocnemius muscle and the Achilles tendon during incline, level and decline locomotion. J. Exp. Biol. 209, 4379–4388 (2006).
pubmed: 17050853
doi: 10.1242/jeb.02434
Dick, T. J., Arnold, A. S. & Wakeling, J. M. Quantifying Achilles tendon force in vivo from ultrasound images. J. Biomech. 49, 3200–3207 (2016).
pubmed: 27544621
pmcid: 5074891
doi: 10.1016/j.jbiomech.2016.07.036
Fukutani, A., Hashizume, S., Kusumoto, K. & Kurihara, T. Influence of neglecting the curved path of the Achilles tendon on Achilles tendon length change at various ranges of motion. Physiol. Rep. 2, e12176 (2014).
pubmed: 25303951
pmcid: 4254101
doi: 10.14814/phy2.12176
De Monte, G., Arampatzis, A., Stogiannari, C. & Karamanidis, K. In vivo motion transmission in the inactive gastrocnemius medialis muscle–tendon unit during ankle and knee joint rotation. J. Electromyogr. Kinesiol. 16, 413–422 (2006).
pubmed: 16309922
doi: 10.1016/j.jelekin.2005.10.001
Arampatzis, A., De Monte, G. & Karamanidis, K. Effect of joint rotation correction when measuring elongation of the gastrocnemius medialis tendon and aponeurosis. J. Electromyogr. Kinesiol. 18, 503–508 (2008).
pubmed: 17254800
doi: 10.1016/j.jelekin.2006.12.002
Fukutani, A. New method for measuring the Achilles tendon length by ultrasonography. Curr. Med. Imaging 10, 259–265 (2014).
doi: 10.2174/157340561004150121124730
Komi, P. V. Relevance of in vivo force measurements to human biomechanics. J. Biomech. 23, 23–34 (1990).
pubmed: 2081741
doi: 10.1016/0021-9290(90)90038-5
Bohm, S., Mersmann, F., Santuz, A. & Arampatzis, A. The force–length–velocity potential of the human soleus muscle is related to the energetic cost of running. Proc. R. Soc. B 286, 20192560 (2019).
pubmed: 31847774
doi: 10.1098/rspb.2019.2560
Kinugasa, R. et al. A multi-modality approach towards elucidation of the mechanism for human achilles tendon bending during passive ankle rotation. Sci. Rep. 8, 1–13 (2018).
doi: 10.1038/s41598-018-22661-7
Maganaris, C. N., Baltzopoulos, V. & Sargeant, A. J. In vivo measurement-based estimations of the human Achilles tendon moment arm. Eur. J. Appl. Physiol. 83, 363–369 (2000).
pubmed: 11138576
doi: 10.1007/s004210000247
Harkness-Armstrong, C. et al. Effective mechanical advantage about the ankle joint and the effect of achilles tendon curvature during toe-walking. Front. Physiol. 11, 407 (2020).
pubmed: 32508666
pmcid: 7248361
doi: 10.3389/fphys.2020.00407
Lavagnino, M., Arnoczky, S. P., Tian, T. & Vaupel, Z. Effect of amplitude and frequency of cyclic tensile strain on the inhibition of MMP-1 mRNA expression in tendon cells: An in vitro study. Connect. Tissue Res. 44, 181–187 (2003).
pubmed: 14504039
doi: 10.1080/03008200390215881
Yang, G., Crawford, R. C. & Wang, J. H. Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J. Biomech. 37, 1543–1550 (2004).
pubmed: 15336929
doi: 10.1016/j.jbiomech.2004.01.005
Pizzolato, C. et al. (BMJ Publishing Group Ltd and British Association of Sport and Exercise Medicine, 2019).
Mersmann, F., Bohm, S. & Arampatzis, A. Imbalances in the development of muscle and tendon as risk factor for tendinopathies in youth athletes: A review of current evidence and concepts of prevention. Front. Physiol. 8, 987 (2017).
pubmed: 29249987
pmcid: 5717808
doi: 10.3389/fphys.2017.00987
Lee, K. K., Ling, S. K. & Yung, P. S. Controlled trial to compare the Achilles tendon load during running in flatfeet participants using a customized arch support orthoses vs an orthotic heel lift. BMC Musculoskelet. Disord. 20, 1–12 (2019).
doi: 10.1186/s12891-019-2898-0
Jinha, A., Ait-Haddou, R., Binding, P. & Herzog, W. Antagonistic activity of one-joint muscles in three-dimensions using non-linear optimisation. Math. Biosci. 202, 57–70 (2006).
pubmed: 16697422
doi: 10.1016/j.mbs.2006.03.018
Ait-Haddou, R., Jinha, A., Herzog, W. & Binding, P. Analysis of the force-sharing problem using an optimization model. Math. Biosci. 191, 111–122 (2004).
pubmed: 15363649
doi: 10.1016/j.mbs.2004.05.003
Neptune, R. R. & Kautz, S. Muscle activation and deactivation dynamics: The governing properties in fast cyclical human movement performance?. Exerc. Sport Sci. Rev. 29, 76–81 (2001).
pubmed: 11337827
Alexander, R. M. Elastic energy stores in running vertebrates. Am. Zool. 24, 85–94 (1984).
doi: 10.1093/icb/24.1.85
Alexander, R. M. Energy-saving mechanisms in walking and running. J. Exp. Biol. 160, 55–69 (1991).
pubmed: 1960518
doi: 10.1242/jeb.160.1.55
Shadwick, R. E. Elastic energy storage in tendons: Mechanical differences related to function and age. J. Appl. Physiol. 68, 1033–1040 (1990).
pubmed: 2341331
doi: 10.1152/jappl.1990.68.3.1033
Voigt, M., Bojsen-Møller, F., Simonsen, E. B. & Dyhre-Poulsen, P. The influence of tendon Youngs modulus, dimensions and instantaneous moment arms on the efficiency of human movement. J. Biomech. 28, 281–291 (1995).
pubmed: 7730387
doi: 10.1016/0021-9290(94)00071-B
Maharaj, J. N., Cresswell, A. G. & Lichtwark, G. A. Tibialis anterior tendinous tissue plays a key role in energy absorption during human walking. J. Exp. Biol. 222, 191–247 (2019).
Ker, R., Bennett, M., Bibby, S., Kester, R. & Alexander, R. M. The spring in the arch of the human foot. Nature 325, 147–149 (1987).
pubmed: 3808070
doi: 10.1038/325147a0
Kelly, L. A., Lichtwark, G. & Cresswell, A. G. Active regulation of longitudinal arch compression and recoil during walking and running. J. R. Soc. Interface 12, 20141076 (2015).
pubmed: 25551151
pmcid: 4277100
doi: 10.1098/rsif.2014.1076
Bennett, M., Ker, R., Imery, N. J. & Alexander, R. M. Mechanical properties of various mammalian tendons. J. Zool. 209, 537–548 (1986).
doi: 10.1111/j.1469-7998.1986.tb03609.x
Pollock, C. M. & Shadwick, R. E. Relationship between body mass and biomechanical properties of limb tendons in adult mammals. Am. J. Physiol. Regul. Integr. Compar. Physiol. 266, R1016–R1021 (1994).
doi: 10.1152/ajpregu.1994.266.3.R1016
Ker, R. F. Dynamic tensile properties of the plantaris tendon of sheep (Ovis aries). J. Exp. Biol. 93, 283–302 (1981).
pubmed: 7288354
doi: 10.1242/jeb.93.1.283
Rosario, M. V. & Roberts, T. J. Loading rate has little influence on tendon fascicle mechanics. Front. Physiol. 11, 255 (2020).
pubmed: 32265742
pmcid: 7105874
doi: 10.3389/fphys.2020.00255
Dingwell, J., Cusumano, J. P., Cavanagh, P. & Sternad, D. Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. J. Biomech. Eng. 123, 27–32 (2001).
pubmed: 11277298
doi: 10.1115/1.1336798
Kongsgaard, M., Nielsen, C., Hegnsvad, S., Aagaard, P. & Magnusson, S. Mechanical properties of the human Achilles tendon, in vivo. Clin. Biomech. 26, 772–777 (2011).
doi: 10.1016/j.clinbiomech.2011.02.011
Craig, J. J. Introduction to Robotics: Mechanics and Control. Vol. 3 (Pearson/Prentice Hall, 2005).
Arampatzis, A. et al. Differences between measured and resultant joint moments during isometric contractions at the ankle joint. J. Biomech. 38, 885–892 (2005).
pubmed: 15713310
doi: 10.1016/j.jbiomech.2004.04.027
Mademli, L., Arampatzis, A., Morey-Klapsing, G. & Brüggemann, G.-P. Effect of ankle joint position and electrode placement on the estimation of the antagonistic moment during maximal plantarflexion. J. Electromyogr. Kinesiol. 14, 591–597 (2004).
pubmed: 15301777
doi: 10.1016/j.jelekin.2004.03.006
An, K., Takahashi, K., Harrigan, T. & Chao, E. Determination of muscle orientations and moment arms. (1984).
Maganaris, C. N., Baltzopoulos, V. & Sargeant, A. J. Changes in Achilles tendon moment arm from rest to maximum isometric plantarflexion: In vivo observations in man. J. Physiol. 510, 977–985 (1998).
pubmed: 9660906
pmcid: 2231068
doi: 10.1111/j.1469-7793.1998.977bj.x