USP19 modulates cancer cell migration and invasion and acts as a novel prognostic marker in patients with early breast cancer.


Journal

Oncogenesis
ISSN: 2157-9024
Titre abrégé: Oncogenesis
Pays: United States
ID NLM: 101580004

Informations de publication

Date de publication:
13 Mar 2021
Historique:
received: 28 10 2020
accepted: 10 02 2021
revised: 08 02 2021
entrez: 14 3 2021
pubmed: 15 3 2021
medline: 15 3 2021
Statut: epublish

Résumé

Tumor cell dissemination in cancer patients is associated with a significant reduction in their survival and quality of life. The ubiquitination pathway plays a fundamental role in the maintenance of protein homeostasis both in normal and stressed conditions and its dysregulation has been associated with malignant transformation and invasive potential of tumor cells, thus highlighting its value as a potential therapeutic target. In order to identify novel molecular targets of tumor cell migration and invasion we performed a genetic screen with an shRNA library against ubiquitination pathway-related genes. To this end, we set up a protocol to specifically enrich positive migration regulator candidates. We identified the deubiquitinase USP19 and demonstrated that its silencing reduces the migratory and invasive potential of highly invasive breast cancer cell lines. We extended our investigation in vivo and confirmed that mice injected with USP19 depleted cells display increased tumor-free survival, as well as a delay in the onset of the tumor formation and a significant reduction in the appearance of metastatic foci, indicating that tumor cell invasion and dissemination is impaired. In contrast, overexpression of USP19 increased cell invasiveness both in vitro and in vivo, further validating our findings. More importantly, we demonstrated that USP19 catalytic activity is important for the control of tumor cell migration and invasion, and that its molecular mechanism of action involves LRP6, a Wnt co-receptor. Finally, we showed that USP19 overexpression is a surrogate prognostic marker of distant relapse in patients with early breast cancer. Altogether, these findings demonstrate that USP19 might represent a novel therapeutic target in breast cancer.

Identifiants

pubmed: 33714979
doi: 10.1038/s41389-021-00318-x
pii: 10.1038/s41389-021-00318-x
pmc: PMC7956144
doi:

Types de publication

Journal Article

Langues

eng

Pagination

28

Subventions

Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : P30CA046934
Organisme : NIGMS NIH HHS
ID : R01 GM120109
Pays : United States
Organisme : Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
ID : PICT 2016-2620
Organisme : NCI NIH HHS
ID : R01 CA117907
Pays : United States
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01CA117907
Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : id18467
Organisme : NCI NIH HHS
ID : P30 CA046934
Pays : United States
Organisme : Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
ID : PICT 2011-2783
Organisme : Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
ID : PICT 2018-03688
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01GM120109
Organisme : National Science Foundation (NSF)
ID : MCB-1817582

Références

Trepat, X., Chen, Z. & Jacobson, K. Cell migration. Compr. Physiol. 2, 2369–2392 (2012).
pubmed: 23720251 pmcid: 4457291 doi: 10.1002/cphy.c110012
Vicente-Manzanares, M. & Horwitz, A. R. Cell migration: an overview. Methods Mol. Biol. 769, 1–24 (2011).
pubmed: 21748665 doi: 10.1007/978-1-61779-207-6_1
Acloque, H., Adams, M. S., Fishwick, K., Bronner-Fraser, M. & Nieto, M. A. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J. Clin. Investig. 119, 1438–1449 (2009).
pubmed: 19487820 doi: 10.1172/JCI38019 pmcid: 2689100
Yang, J. & Weinberg, R. A. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14, 818–829 (2008).
pubmed: 18539112 doi: 10.1016/j.devcel.2008.05.009
Gupta, G. P. & Massague, J. Cancer metastasis: building a framework. Cell 127, 679–695 (2006).
pubmed: 17110329 doi: 10.1016/j.cell.2006.11.001
Lefranc, F., Brotchi, J. & Kiss, R. Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J. Clin. Oncol. 23, 2411–2422 (2005).
pubmed: 15800333 doi: 10.1200/JCO.2005.03.089
Megalizzi, V. et al. 4-IBP, a sigma1 receptor agonist, decreases the migration of human cancer cells, including glioblastoma cells, in vitro and sensitizes them in vitro and in vivo to cytotoxic insults of proapoptotic and proautophagic drugs. Neoplasia 9, 358–369 (2007).
pubmed: 17534441 pmcid: 1877975 doi: 10.1593/neo.07130
Wells, A., Grahovac, J., Wheeler, S., Ma, B. & Lauffenburger, D. Targeting tumor cell motility as a strategy against invasion and metastasis. Trends Pharm. Sci. 34, 283–289 (2013).
pubmed: 23571046 doi: 10.1016/j.tips.2013.03.001
Palmer, T., Ashby, W., Lewis, J. & Zijlstra, A. Targeting tumor cell motility to prevent metastasis. Adv. Drug Deliv. Rev. 63, 568–581 (2012).
doi: 10.1016/j.addr.2011.04.008
Eckhardt, B. L., Francis, P. A., Parker, B. S. & Anderson, R. L. Strategies for the discovery and development of therapies for metastatic breast cancer. Nat. Rev. Drug Discov. 11, 479–497 (2012).
pubmed: 22653217 doi: 10.1038/nrd2372
Ciechanover, A., Hod, Y. & Hershko, A. A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem. Biophys. Res. Commun. 81, 1100–1105 (1978).
doi: 10.1016/0006-291X(78)91249-4
Hershko, A., Ciechanover, A., Heller, H., Haas, A. & Rose, I. A. Proposed role of ATP in protein breakdown: conjugation of proteins with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc. Natl Acad. Sci. USA 77, 1783–1786 (1980).
pubmed: 6990414 doi: 10.1073/pnas.77.4.1783 pmcid: 348591
Husnjak, K. & Dikic, I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81, 291–322 (2012).
pubmed: 22482907 doi: 10.1146/annurev-biochem-051810-094654
Schaefer, A., Nethe, M. & Hordijk, P. L. Ubiquitin links to cytoskeletal dynamics, cell adhesion and migration. Biochem. J. 442, 13–25 (2012).
pubmed: 22280013 doi: 10.1042/BJ20111815
Nijman, S. M. B. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786 (2005).
pubmed: 16325574 doi: 10.1016/j.cell.2005.11.007
Yao, H. et al. Triple-negative breast cancer: is there a treatment on the horizon? Oncotarget 8, 1913–1924 (2017).
pubmed: 27765921 doi: 10.18632/oncotarget.12284
He, W. T. et al. Cytoplasmic ubiquitin-specific protease 19 (USP19) modulates aggregation of polyglutamine-expanded ataxin-3 and Huntingtin through the HSP90 chaperone. PLoS ONE 11, e0147515 (2016).
pubmed: 26808260 pmcid: 4726498 doi: 10.1371/journal.pone.0147515
Wiles, B. et al. USP19 deubiquitinating enzyme inhibits muscle cell differentiation by suppressing unfolded-protein response signaling. Mol. Biol. Cell 26, 913–923 (2015).
pubmed: 25568336 pmcid: 4342027 doi: 10.1091/mbc.E14-06-1129
Hassink, G. C. et al. The ER-resident ubiquitin-specific protease 19 participates in the UPR and rescues ERAD substrates. EMBO Rep. 10, 755–761 (2009).
pubmed: 19465887 pmcid: 2727442 doi: 10.1038/embor.2009.69
Lee, J. G., Kim, W., Gygi, S. & Ye, Y. Characterization of the deubiquitinating activity of USP19 and its role in endoplasmic reticulum-associated degradation. The. J. Biol. Chem. 289, 3510–3517 (2014).
pubmed: 24356957 doi: 10.1074/jbc.M113.538934
He, W. T. et al. HSP90 recognizes the N-terminus of huntingtin involved in regulation of huntingtin aggregation by USP19. Sci. Rep. 7, 14797 (2017).
pubmed: 29093475 pmcid: 5666004 doi: 10.1038/s41598-017-13711-7
Perrody, E. et al. Ubiquitin-dependent folding of the Wnt signaling coreceptor LRP6. eLife 5, e19083 (2016).
pubmed: 27751231 pmcid: 5102578 doi: 10.7554/eLife.19083
Bilir, B., Kucuk, O. & Moreno, C. S. Wnt signaling blockage inhibits cell proliferation and migration, and induces apoptosis in triple-negative breast cancer cells. J. Transl. Med. 11, 12 (2013).
doi: 10.1186/1479-5876-11-280
Geyer, F. C. et al. beta-Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation. Modern Pathol. 24, 209–231 (2011).
doi: 10.1038/modpathol.2010.205
Khramtsov, A. I. et al. Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am. J. Pathol. 176, 2911–2920 (2010).
pubmed: 20395444 pmcid: 2877852 doi: 10.2353/ajpath.2010.091125
Matsuda, Y., Schlange, T., Oakeley, E. J., Boulay, A. & Hynes, N. E. WNT signaling enhances breast cancer cell motility and blockade of the WNT pathway by sFRP1 suppresses MDA-MB-231 xenograft growth. Breast Cancer Res. 11, R32 (2009).
pubmed: 19473496 pmcid: 2716500 doi: 10.1186/bcr2317
Raisch, J., Cote-Biron, A. & Rivard, N. A role for the WNT co-receptor LRP6 in pathogenesis and therapy of epithelial cancers. Cancers 11, 1–23 (2019).
doi: 10.3390/cancers11081162
Wiggins, H. & Rappoport, J. An agarose spot assay for chemotactic invasion. Biotechniques 48, 121–124 (2010).
pubmed: 20359295 doi: 10.2144/000113353
Salvany, L., Muller, J., Guccione, E. & Rorth, P. The core and conserved role of MAL is homeostatic regulation of actin levels. Genes Dev. 28, 1048–1053 (2014).
pubmed: 24831700 pmcid: 4035534 doi: 10.1101/gad.237743.114
Ahmed, M. et al. Agarose spot as a comparative method for in situ analysis of simultaneous chemotactic responses to multiple chemokines. Sci. Rep. 7, 1075 (2017).
pubmed: 28432337 pmcid: 5430824 doi: 10.1038/s41598-017-00949-4
Rameshwar, P., Patel, S., Pine, S. & Rameshwar, P. Noble agar assay for self-renewal. Protoc. Exchange 1–5, https://doi.org/10.1038/protex.2013.021 (2013).
Ampuja, M. et al. BMP4 inhibits the proliferation of breast cancer cells and induces an MMP-dependent migratory phenotype in MDA-MB-231 cells in 3D environment. BMC Cancer 13, 1–13 (2013).
doi: 10.1186/1471-2407-13-429
Farias, E. F. et al. Interference with Sin3 function induces epigenetic reprogramming and differentiation in breast cancer cells. Proc. Natl Acad. Sci. USA 107, 11811–11816 (2010).
pubmed: 20547842 doi: 10.1073/pnas.1006737107 pmcid: 2900697
Ibrahim, A. M. et al. Fibulin-2 is required for basement membrane integrity of mammary epithelium. Sci. Rep. 8, 14139 (2018).
pubmed: 30237579 pmcid: 6148073 doi: 10.1038/s41598-018-32507-x
Sadej, R. et al. CD151 regulates tumorigenesis by modulating the communication between tumor cells and endothelium. Mol. Cancer Res. 7, 787–798 (2009).
pubmed: 19531562 doi: 10.1158/1541-7786.MCR-08-0574
Llorens, M. C. et al. PKCalpha modulates epithelial-to-mesenchymal transition and invasiveness of breast cancer cells through ZEB1. Front. Oncol. 9, 1323 (2019).
pubmed: 31828042 pmcid: 6890807 doi: 10.3389/fonc.2019.01323
Vaske, C. J. et al. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 26, i237–i245 (2010).
pubmed: 20529912 pmcid: 2881367 doi: 10.1093/bioinformatics/btq182
Lattanzio, R. et al. Overexpression of activated phospholipase Cgamma1 is a risk factor for distant metastases in T1-T2, N0 breast cancer patients undergoing adjuvant chemotherapy. Int. J. Cancer 132, 1022–1031 (2013).
pubmed: 22847294 doi: 10.1002/ijc.27751
Chen, Q. et al. USP10 promotes proliferation and migration and inhibits apoptosis of endometrial stromal cells in endometriosis through activating the Raf-1/MEK/ERK pathway. Am. J. Physiol. Cell Physiol. 315, C863–C872 (2018).
pubmed: 30281322 doi: 10.1152/ajpcell.00272.2018
Ouchida, A. T. et al. USP10 regulates the stability of the EMT-transcription factor Slug/SNAI2. Biochem. Biophys. Res. Commun. 502, 429–434 (2018).
pubmed: 29803676 doi: 10.1016/j.bbrc.2018.05.156
Yuan, T. et al. Deubiquitinating enzyme USP10 promotes hepatocellular carcinoma metastasis through deubiquitinating and stabilizing Smad4 protein. Mol. Oncol. 14, 197–210 (2020).
pubmed: 31721429 doi: 10.1002/1878-0261.12596
Hanahan, D. & Weinberg, R. A. in Holland-Frei Cancer Medicine 9th edn. 1 (eds Bast R. C. Jr., et al.) (Wiley Blackwell, 2017).
Welch, D. R. & Hurst, D. R. Defining the hallmarks of metastasis. Cancer Res 79, 3011–3027 (2019).
pubmed: 31053634 pmcid: 6571042 doi: 10.1158/0008-5472.CAN-19-0458
Combaret, L. et al. USP19 is a ubiquitin-specific protease regulated in rat skeletal muscle during catabolic states. Am. J. Physiol. Endocrinol. Metab. 288, E693–E700 (2005).
pubmed: 15562254 doi: 10.1152/ajpendo.00281.2004
Jin, S. et al. USP19 modulates autophagy and antiviral immune responses by deubiquitinating Beclin-1. EMBO J. 35, 866–880 (2016).
pubmed: 26988033 pmcid: 4972138 doi: 10.15252/embj.201593596
Gierisch, M. E. et al. USP19 deubiquitinates EWS-FLI1 to regulate Ewing sarcoma growth. Sci. Rep. 9, 951 (2019).
pubmed: 30700749 pmcid: 6353870 doi: 10.1038/s41598-018-37264-5
Lu, Y. et al. USP19 deubiquitinating enzyme supports cell proliferation by stabilizing KPC1, a ubiquitin ligase for p27Kip1. Mol. Cell Biol. 29, 547–558 (2009).
pubmed: 19015242 doi: 10.1128/MCB.00329-08
Lim, K. et al. Ubiquitin specific protease 19 involved in transcriptional repression of retinoic acid receptor by stabilizing CORO2A. Oncotarget 7, 34759–34772 (2016).
pubmed: 27129179 pmcid: 5085187 doi: 10.18632/oncotarget.8976
Yamaguchi, H. & Condeelis, J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochimica et. biophysica acta 1773, 642–652 (2007).
pubmed: 16926057 doi: 10.1016/j.bbamcr.2006.07.001
Weathington, N. M. & Mallampalli, R. K. Emerging therapies targeting the ubiquitin proteasome system in cancer. J. Clin. Investig. 124, 6–12 (2014).
pubmed: 24382383 doi: 10.1172/JCI71602 pmcid: 3871250
Veggiani, G., Gerpe, M. C. R., Sidhu, S. S. & Zhang, W. Emerging drug development technologies targeting ubiquitination for cancer therapeutics. Pharm. Ther. 199, 139–154 (2019).
doi: 10.1016/j.pharmthera.2019.03.003
Morrow, J. K., Lin, H.-K., Sun, S.-C. & Zhang, S. Targeting ubiquitination for cancer therapies. Future Medicinal Chem. 7, 2333–2350 (2015).
doi: 10.4155/fmc.15.148
Huang, X. & Dixit, V. M. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 26, 484–498 (2016).
pubmed: 27002218 pmcid: 4822129 doi: 10.1038/cr.2016.31
Cui, J., Jin, S. & Wang, R. F. The BECN1-USP19 axis plays a role in the crosstalk between autophagy and antiviral immune responses. Autophagy 12, 1210–1211 (2016).
pubmed: 27096686 pmcid: 4990993 doi: 10.1080/15548627.2016.1173801
Gu, Z., Shi, W., Zhang, L., Hu, Z. & Xu, C. USP19 suppresses cellular type I interferon signaling by targeting TRAF3 for deubiquitination. Future Microbiol 12, 767–779 (2017).
pubmed: 28391724 doi: 10.2217/fmb-2017-0006
Lei, C. Q. et al. USP19 Inhibits TNF-alpha- and IL-1beta-Triggered NF-kappaB Activation by Deubiquitinating TAK1. J. Immunol. 203, 259–268 (2019).
pubmed: 31127032 doi: 10.4049/jimmunol.1900083
Lim, K.-H. et al. Ubiquitin specific protease 19 involved in transcriptional repression of retinoic acid receptor by stabilizing CORO2A. Oncotarget 7, 34759–34772 (2016).
pubmed: 27129179 pmcid: 5085187 doi: 10.18632/oncotarget.8976
Mei, Y., Hahn, A. A., Hu, S. & Yang, X. The USP19 deubiquitinase regulates the stability of c-IAP1 and c-IAP2. The. J. Biol. Chem. 286, 35380–35387 (2011).
pubmed: 21849505 pmcid: 3195621 doi: 10.1074/jbc.M111.282020
Nakamura, N., Harada, K., Kato, M. & Hirose, S. Ubiquitin-specific protease 19 regulates the stability of the E3 ubiquitin ligase MARCH6. Exp. Cell Res. 328, 207–216 (2014).
pubmed: 25088257 doi: 10.1016/j.yexcr.2014.07.025
Wu, X. et al. Regulation of TRIF-mediated innate immune response by K27-linked polyubiquitination and deubiquitination. Nat. Commun. 10, 4115 (2019).
pubmed: 31511519 pmcid: 6739404 doi: 10.1038/s41467-019-12145-1
Altun, M. et al. Ubiquitin-specific protease 19 (USP19) regulates hypoxia-inducible factor 1alpha (HIF-1alpha) during hypoxia. J. Biol. Chem. 287, 1962–1969 (2012).
pubmed: 22128162 doi: 10.1074/jbc.M111.305615
Harada, K., Kato, M. & Nakamura, N. USP19-mediated deubiquitination facilitates the stabilization of HRD1 ubiquitin ligase. Int. J. Mol. Sci. 17, 1–9 (2016).
doi: 10.3390/ijms17111829
Wu, M. et al. USP19 deubiquitinates HDAC1/2 to regulate DNA damage repair and control chromosomal stability. Oncotarget 8, 2197–2208 (2017).
pubmed: 27517492 doi: 10.18632/oncotarget.11116
Lu, Y., Bedard, N., Chevalier, S. & Wing, S. S. Identification of distinctive patterns of USP19-mediated growth regulation in normal and malignant cells. PLoS ONE 6, e15936 (2011).
pubmed: 21264218 pmcid: 3022023 doi: 10.1371/journal.pone.0015936
Li, Z., Yin, S., Zhang, L., Liu, W. & Chen, B. Prognostic value of reduced E-cadherin expression in breast cancer: a meta-analysis. Oncotarget 8, 16445–16455 (2017).
pubmed: 28147315 pmcid: 5369975 doi: 10.18632/oncotarget.14860
Yang, L. et al. Significance and prognosis of epithelial-cadherin expression in invasive breast carcinoma. Oncol. Lett. 16, 1659–1665 (2018).
pubmed: 30008850 pmcid: 6036376
Liu, C. C., Prior, J., Piwnica-Worms, D. & Bu, G. LRP6 overexpression defines a class of breast cancer subtype and is a target for therapy. Proc. Natl Acad. Sci. USA 107, 5136–5141 (2010).
pubmed: 20194742 doi: 10.1073/pnas.0911220107 pmcid: 2841938
King, T. D., Suto, M. J. & Li, Y. The Wnt/beta-catenin signaling pathway: a potential therapeutic target in the treatment of triple negative breast cancer. J. Cell. Biochem. 113, 13–18 (2012).
pubmed: 21898546 doi: 10.1002/jcb.23350
Hu, W. et al. Ubiquitin specific peptidase 19 is a prognostic biomarker and affect the proliferation and migration of clear cell renal cell carcinoma. Oncol. Rep. 43, 1964–1974 (2020).
pubmed: 32236633 pmcid: 7160536
Liu, Q., Zhao, S., Su, P. & Yu, S. Gene and isoform expression signatures associated with tumor stage in kidney renal clear cell carcinoma. BMC Syst. Biol. 7, 1–11 (2013).
doi: 10.1186/1752-0509-7-S5-S7

Auteurs

Fabiana Alejandra Rossi (FA)

Instituto de Investigaciones en Medicina Traslacional (IIMT) - CONICET, Universidad Austral, Pilar, Buenos Aires, Argentina.
Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET-MPSP), Buenos Aires, Argentina.

Juliana Haydeé Enriqué Steinberg (JH)

Instituto de Investigaciones en Medicina Traslacional (IIMT) - CONICET, Universidad Austral, Pilar, Buenos Aires, Argentina.
Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET-MPSP), Buenos Aires, Argentina.

Ezequiel Hernán Calvo Roitberg (EH)

Instituto de Investigaciones en Medicina Traslacional (IIMT) - CONICET, Universidad Austral, Pilar, Buenos Aires, Argentina.
Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET-MPSP), Buenos Aires, Argentina.

Molishree Umesh Joshi (MU)

Functional Genomics Facility, University of Colorado School of Medicine, Aurora, CO, USA.

Ahwan Pandey (A)

Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.

Martin Carlos Abba (MC)

Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas - Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.

Beatrice Dufrusine (B)

Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Chieti, Italy.

Simonetta Buglioni (S)

Advanced Diagnostics and Technological Innovation Department, Regina Elena Cancer Institute, Rome, Italy.

Vincenzo De Laurenzi (V)

Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Chieti, Italy.

Gianluca Sala (G)

Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Chieti, Italy.

Rossano Lattanzio (R)

Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Chieti, Italy.

Joaquín Maximiliano Espinosa (JM)

Functional Genomics Facility, University of Colorado School of Medicine, Aurora, CO, USA.
Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO, USA.
Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA.

Mario Rossi (M)

Instituto de Investigaciones en Medicina Traslacional (IIMT) - CONICET, Universidad Austral, Pilar, Buenos Aires, Argentina. mrossi-conicet@austral.edu.ar.

Classifications MeSH