Silicon reduces cadmium absorption and increases root-to-shoot translocation without impacting growth in young plants of hemp (Cannabis sativa L.) on a short-term basis.


Journal

Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769

Informations de publication

Date de publication:
Jul 2021
Historique:
received: 27 10 2020
accepted: 08 02 2021
pubmed: 18 3 2021
medline: 28 7 2021
entrez: 17 3 2021
Statut: ppublish

Résumé

Textile hemp (Cannabis sativa L.) is a non-edible multipurpose crop suitable for fiber production and/or phytoremediation on moderately heavy metal-contaminated soils. Experiments were conducted in nutrient solution to assess the short-term impact of silicon (Si), a well-known beneficial element, on plants exposed to 20 μM cadmium (Cd) in nutrient solution. Cd decreased plant growth and affected photosynthesis through non-stomatal effects. Cd translocation factor was higher than 1, confirming the interest of hemp for phytoextraction purposes. Additional Si did not improve plant growth after 1 week of treatment but decreased Cd accumulation in all organs and improved water use efficiency through a decrease in transpiration rate. Si had only marginal impact on Cd distribution among organs. It increased glutathione and phytochelatin synthesis allowing the plants to efficiently cope with oxidative stress through the improvement of Cd sequestration on thiol groups in the roots. Si may thus have a fast impact on the plant behavior before the occurrence of plant growth stimulation.

Identifiants

pubmed: 33728605
doi: 10.1007/s11356-021-12912-y
pii: 10.1007/s11356-021-12912-y
doi:

Substances chimiques

Soil Pollutants 0
Cadmium 00BH33GNGH
Silicon Z4152N8IUI

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

37963-37977

Subventions

Organisme : ADEME Agence Pour la Transition Ecologique
ID : MisChar 1672C0044

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Adrees M, Ali S, Rizwan M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotox Environ Safe 119:186–197
doi: 10.1016/j.ecoenv.2015.05.011
Ahmad R, Tehsin Z, Malik ST, Asad SA, Shahzad M, Bilal M, Shah MM, Khan SA (2016) Phytoremediation potential of hemp (Cannabis sativa L.): identification and characterization of heavy metals responsive genes. CLEAN–Soil Air Water 44:195–201
doi: 10.1002/clen.201500117
Ali H, Khan E, Anwar Sajad M (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881
doi: 10.1016/j.chemosphere.2013.01.075
Angelova V, Ivanova R, Delibaltova V, Ivanov K (2004) Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Ind Crop Prod 19:197–205
doi: 10.1016/j.indcrop.2003.10.001
Arru L, Rognoni S, Baroncini M, Bonatti PM, Perata P (2004) Copper localization in Cannabis sativa L. grown in a copper-rich solution. Euphytica 140:33–38
doi: 10.1007/s10681-004-4752-0
Ascrizzi R, Ceccarni L, Tavarini S, Flamini G, Angelini LG (2019) Valorisation of hemp inflorescence after seed harvest: cultivation site and harvest time influence agronomic characteristics and essential oil yield and composition. Ind Crop Prod 139:111541
doi: 10.1016/j.indcrop.2019.111541
Barceló J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Contributions to Science 2:333–344
Baryla A, Carrier P, Franck F, Coulomb C, Sahut C, Havaux M (2001) Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta 212:696–709
doi: 10.1007/s004250000439
Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76
doi: 10.1006/abio.1996.0292
Berni R, Luyckx M, Xu X, Legay S, Sergeant K, Hausman JF, Lutts S, Cai G, Guerriero G (2018) Reactive oxygen species and heavy metal stress in plants: impact on the cell wall and secondary metabolism. Environ Exp Bot 161:98–106
doi: 10.1016/j.envexpbot.2018.10.017
Berni R, Mandlik R, Hausman JF, Guerriero G (2020) Silicon-induced mitigatory effects in salt-stressed hemp leaves. Physiol Plant (in press)
Bhat JA, Shivaraj SM, Singh P, Navadagi DB, Tripathi DK, Dash PK, Solanke AU, Sonah H, Deshmukh R (2019) Role of silicon in mitigation of heavy metal stresses in crop plants. Plants 8:71
doi: 10.3390/plants8030071
Bleuze L, Lashermes G, Alavoine G, Recous S, Chabbert B (2018) Tracking the dynamics of hemp dew retting under controlled environmental conditions. Ind Crop Pro 123:55–63
doi: 10.1016/j.indcrop.2018.06.054
Branda F, Malucelli G, Durante M, Piccolo A, Mazzei P, Costantini A, Silvestri B, Pennetta M (2016) Silica treatment; a fire retardant strategy for hemp fabric/epoxy composites. Polymers 8:313
doi: 10.3390/polym8080313
Cereser C, Guichard J, Drai J, Bannier E, Garcia I, Boget S, Parvaz P, Revol A (2001) Quantitation of reduced and total glutathione at the femtomole level by high-performance liquid chromatography with fluorescence detection: application to red blood cells and cultured fibroblasts. J Chrom B Biomedical Sci Appl 752:123–132
doi: 10.1016/S0378-4347(00)00534-X
Citterio S, Prato N, Fumagalli P, Aina R, Massa N, Santagostno A, Sgorbati S, Berta G (2005) The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere 59:21–29
doi: 10.1016/j.chemosphere.2004.10.009
Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832
doi: 10.1104/pp.123.3.825
Comnan O, Maro D, Hébert D, Roupsard P, Goujon R, Letellier B, Le Cavelier S (2013) Wet and dry deposition of particles associated metals (Cd, Pb, Zn, Ni, Hg) in a rural wetland site, Marais Vernier, France. Atmos Environ 67:394–403
doi: 10.1016/j.atmosenv.2012.11.029
De Vos CR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858
doi: 10.1104/pp.98.3.853
Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nut Met Cardiovac Dis 15:316–328
doi: 10.1016/j.numecd.2005.05.003
Doncheva S, Poschenrieder C, Stoyanova Z, Georgieva K, Velichkova M, Barcelo J (2009) Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-tolerant maize varieties. Environ Exp Bot 65:189–197
doi: 10.1016/j.envexpbot.2008.11.006
Douay F, Pelfrêne A, Planque J, Fourrier H, Richard A, Roussel H, Girondelot B (2013) Assessment of potential health risk for inhabitant living near a formeer lead smelter. Part 1: metal concentrations in soils, agricultural crops, and homegrown vegetables. Environ Monit Assess 185:3665–3680
doi: 10.1007/s10661-012-2818-3
Dufey I, Gheysens S, Ingabire A, Lutts S, Bertin P (2014) Silicon application in cultivated rice (Oryza sativa L. and O. glaberrima Steud.) alleviates iron toxicity symptoms through the reduction in iron concentration in the leaf tissue. J Agron Crop Sci 200:132–142
doi: 10.1111/jac.12046
Duque-Schumacher AG, Pequito S, Pazour J (2020) Industrial hemp fiber: a sustainable and economical alternative to cotton. J Clean Prod 268:122180
doi: 10.1016/j.jclepro.2020.122180
Epstein E (1994) The anomaly of silicon in plant biology. PNAS 91:11–17
doi: 10.1073/pnas.91.1.11
Feng W, Guo Z, Xiao X, Peng C, Shi L, Ran H, Xu W (2020) A dynamic model to evaluate the critical loads of heavy metals in agricultural soil. Ecotox Environ Safe 197:110607
doi: 10.1016/j.ecoenv.2020.110607
Grčman H, Velikonja-Bolta Š, Vodnik D, Kos B, Leštan D (2001) EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant and Soil 235:105–114
doi: 10.1023/A:1011857303823
Guerriero G, Behr M, Backes A, Fakeri C, Hausman JF, Lutts S, Cai G (2017) Bast fibre formation insights from next generation sequencing. Encycl Engineer 200:229–235
Guerriero G, Deshmukh R, Sonah H, Sergeant K, Hausman JF, Lentze E, Valle N, Siddiqui KS, Exley C (2019) Identification of the aquaporin gene family in Cannabis sativa and evidence for the accumulation of silicon in its tissues. Plant Sci 287:110167
doi: 10.1016/j.plantsci.2019.110167
Gutsch A, Vandionant S, Sergeant K, Jozefczak M, Vangronsveld J, Hausman JF, Cuypers A (2019) Systems Biology of Metal Tolerance in Plants: A Case Study on the Effects of Cd Exposure on Two Model Plants. In: Sablok G (ed) Plant Metallomics and Functional Omics. Springer, Cham, pp 23–37
doi: 10.1007/978-3-030-19103-0_2
He S, Yang X, He Z, Baligar VC (2017) Morphological and physiological responses of plants to cadmium toxicity: a review. Pedosphere 27:421–438
doi: 10.1016/S1002-0160(17)60339-4
Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoeichiometry of fatty acid peroxidation. Arch Biochem Biophys 25:185–188
Hendrix S, Jozefczak M, Wojcik M, Deckers J, Vangronsveld J, Cuypers A (2020) Glutathione: a key player in metal chelation, nutrient homeostasis, cell cycle regulation and the DNA damage response in cadmium-exposed Arabidopsis thaliana. Plant Physiol Biochem 154:498–507
doi: 10.1016/j.plaphy.2020.06.006
Huang Y, Li D, Zhao L, Chen A, Li J, Tang H, Pan G, Chang L, Deng Y, Huang S (2019) Comparative transcriptome combined with physiological analyses revealed key factors for differential cadmium tolerance in two contrasting hemp (Cannabis sativa L.) cultivars. Ind. Crop Prod 140:111638
doi: 10.1016/j.indcrop.2019.111638
Huang X, Duan S, Wu Q, Yu M, Shabala S (2020) Reducing cadmium accumulation in plants: structure-function relations and tissue-specific operation of transporters in the spotlight. Plant 9:223
doi: 10.3390/plants9020223
Hussain R, Weeden H, Bogush D, Degushi M, Soliman M, Potlakayala S, Katam R, Goldman S, Rudrabhatia S (2019) Enhanced tolerance of industrial hemp (Cannabis sativa L.) plants on abandoned mineland soil leads to overexpression of cannabinoids. PLoS ONE 14:e0221570
doi: 10.1371/journal.pone.0221570
Imtiaz M, Rizwan MS, Mushtag MA, Ashraf M, Shahazad SM, Yousaf B, Saeed DA, Rizwan M, Nawaz MA, Mehmood S, Tu S (2016) Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: a review. J Environ Manag 183:521–529
doi: 10.1016/j.jenvman.2016.09.009
Jiang Y, Bourebrab MA, Sid N, Taylor A, Collet F, Pretot S, Hussain A, Ansell M, Lawrence M (2018) Improvement of water resistance of hemp woody substrates through deposition of functionalzed silica hydrophobic coating while retaining excellent moisture buffering properties. Sus Chem Eng 6:10151–10161
doi: 10.1021/acssuschemeng.8b01475
Jonar F, De Canniere S, Brüggemann N, Gentine P, Short Gianotti DJ, Lobet G, Miralles DG, Montzka C, Pagán BR, Rascher U, Vereecken H (2020) Value of sun-induced chlorophyll fluorescence for quantifying hydrological states and fluxes: current status and challenges. Agric Forest Meteor 291:108088
doi: 10.1016/j.agrformet.2020.108088
Jozefczak M, Keunen E, Schat H, Bliek M, Hernández LE, Carleer R, Remans T, Bohler S, Vangronsveld J, Cuypers A (2014) Differential response of Arabidopsis leaves and roots to cadmium : glutathione-related chelating capacity vs antioxidant capacity. Plant Physiol Biochem 83:1–9
doi: 10.1016/j.plaphy.2014.07.001
Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Lukasik I, Goltsev V, Ladle RJ (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:102
doi: 10.1007/s11738-016-2113-y
Kalousek P, Schreiber P, Vyhnánek T, Trojan V, Adamcová D, Vaverková MD (2020) Effect of landfill leachate on the growth parameters in two selected varieties of fiber hemp. Int J Environ Res 14:155–163
doi: 10.1007/s41742-020-00249-2
Khalid N, Aqeel M, Noman A (2019) System Biology of Metal Tolerance in Plants: An Integrated View of Genomics, Transcriptomics, Metabolomics, and Phenomics. In: Sablok G (ed) Plant Metallomics and Functional Omics. Springer, Cham, pp 107–144
doi: 10.1007/978-3-030-19103-0_6
Kim YH, Khan AL, Waqas M, Lee IJ (2017) Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review. Front Plant Sci 8:510
Kos B, Leštan D (2004) Soil washing of Pb, Zn and C using biodegradable chelator and permeable barriers and induced phytoextraction by Cannabis sativa. Plant Soil 263:43–51
doi: 10.1023/B:PLSO.0000047724.46413.27
Koushki P, Kwok TH, Hof L, Wuhrich R (2020) Reinforcing silicone whit hemp fiber for additive manufacturing. Comp Sci Technol 194:108139
doi: 10.1016/j.compscitech.2020.108139
Kröger N, Poulsen N (2004) Diatoms–from cell wall biogenesis to nanotechnology. Ann Rev Genet 42:83–107
doi: 10.1146/annurev.genet.41.110306.130109
Krzeslowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant 33:35–51
doi: 10.1007/s11738-010-0581-z
Kumar S, Singh R, Kumar V, Rani A, Jain R (2017) Cannabis sativa: A Plant Suitable for Phytoremediation and Bioenergy Production. In: Baudh K, Singh B, Korstad J (eds) Phytoremediation Potential of Bioenergy Plants. Springer, Singapore, pp 269–285
doi: 10.1007/978-981-10-3084-0_10
Kumarpondit T, Kumarnaik S, Patra PK, Dey N, Patra PK, Das DK (2017) Influence of organic manure and lime on cadmium mobility in soil and uptake by spinach (Spinacea oleracea L.). Comm Soil Sci Plant Anal 48:357–369
Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments–a review. Waste Manag 28:215–225
doi: 10.1016/j.wasman.2006.12.012
Lefèvre I, Corréal E, Lutts S (2009) Evolution of plant response to heavy metals during vegetative growth in Dorycnium pentaphyllum. Plant Growth Regul 59:1–11
doi: 10.1007/s10725-009-9382-z
Lefèvre I, Vogel-Mikus J, Jeromel J, Vavpetic P, Planchon S, Arcon I, van Elteren J, Lepoint G, Gobert S, Renaut J, Pelicon P, Lutts S (2014) Cadmium and zinc distribution in relation to their physiological impact in the leaves of the accumulating Zygophyllum fabago L. Plant Cell Environ 37:1299–1320
doi: 10.1111/pce.12234
Lichtenthaler HK (1987) Chlorophylls and carotenoids-pigments of photosynthetic biomembranes. Meth Enzymol 148:350–382
doi: 10.1016/0076-6879(87)48036-1
Luyckx M, Hausman JF, Lutts S, Guerriero G (2017) Silicon and plants: current knowledge and technological perspectives. Front Plant Sci 8:411
doi: 10.3389/fpls.2017.00411
Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Ronghua L, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotox Environ Saf 126:111–121
doi: 10.1016/j.ecoenv.2015.12.023
Matassa S, Esposito G, Pirozzi F, Papirio S (2020) Exploring the biomethane potential of different industrial hemp (Cannabias sativa L.) biomass residues. Energies 13:3361
doi: 10.3390/en13133361
Maxwell K, Johnson GN (2000) Chlorophyll fluorescence–a practical guide. J Exp Bot 51:659–668
doi: 10.1093/jexbot/51.345.659
Mayta M, Hajirezaei MR, Carrillo N, Lodeyro AF (2019) Leaf senescence: the chloroplast connection comes of age. Plants 8:8110495
doi: 10.3390/plants8110495
Mihoc M, Pop G, Alexa E, Radulov I (2012) Nutritive quality of romanian hemp varieties (Cannabis sativa L.) with special focus on oil and metal contents of seeds. Chem Cent J 6:122
doi: 10.1186/1752-153X-6-122
Mlinarić S, Dunić JA, Štolfa I, Cesar V, Lepeduš H (2016) High irradiation and increased temperature induce different strategies for competent photosynthesis in young and mature fig leaves. South Afr J Bot 103:25–31
doi: 10.1016/j.sajb.2015.08.010
Neumann D, Zur Nieden U (2001) Silicon and heavy metal tolerance of higher plants. Phytochem 56:685–692
doi: 10.1016/S0031-9422(00)00472-6
Pejic B, Vukcevic M, Kostic M, Skundric P (2009) Biosorption of heavy metal ions from aqueous solutions by short hemp fibers: effect of chemical composition. J Hazard Mat 164:146–153
doi: 10.1016/j.jhazmat.2008.07.139
Pietrini F, Passatore L, Patti V, Frabcocci F, Giovnnozzi A, Zacchini M (2019) Morpho-physiological and metal accumulation responses of hemp plants (Cannabis sativa L.) grown on soil from an agro-industrial contaminated area. Water 11:808
doi: 10.3390/w11040808
Praspaliauskas M, Žaltauskaite J, Pedišius SN (2020) Comprehensive evaluation of sewage sludge and sewage sludge char soil amendments impact on industrial hemp growth performance and heavy metal accumulation. Ind Crop Prod 150:112396
doi: 10.1016/j.indcrop.2020.112396
Sengupta D, Naik D, Reddy AR (2015) Plant aldo-keto-reductase (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense: a structure-function update. J Plant Physiol 179:40–55
doi: 10.1016/j.jplph.2015.03.004
Shi X, Zhang C, Wang H, Zhang F (2005) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272:53–60
doi: 10.1007/s11104-004-3920-2
Shi GR, Cai QS, Liu QQ, Wu L (2009) Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. Acta Physiol Plant 31:969–977
doi: 10.1007/s11738-009-0312-5
Shi G, Liu C, Cui C, Ma Y, Cai Q (2012) Cadmium tolerance and bioaccumulation of 18 hemp accessions. Appl Biochem Biotechnol 168:163–173
doi: 10.1007/s12010-011-9382-0
Tóth G, Hermann T, Da Silva MR, Montanarella L (2016) Heavy metal in agricultural soils of the European Union with implication for food safety. Environm Int 88:299–309
doi: 10.1016/j.envint.2015.12.017
Vandepitte K, Vasile S, Vermeire S, Venderhoeven M, Van der Borght LJ, De Raeve A, Troch V (2020) Hemp (Cannabis sativa L.) for high-value textile applications: the effective long fiber yield and quality of different hemp varieties, processed using industrial flax equipment. Ind Crop Prod 158:112969
doi: 10.1016/j.indcrop.2020.112969
Vukčević M, Pejić B, Kaliajadis A, Pajić-Lijaković I, Kostić M, Lausevic Z, Laušević M (2014) Carbon material from waste short hemp fibers as a sorbent for heavy metal ions – Mathematical modeling of sorbent structure and ions transport. Chem Eng J 233:284–292
doi: 10.1016/j.cej.2013.09.047
Wu JW, Shi Y, Zhu YX, Wang YC, Gong HJ (2013) Mechanisms of enhanced heavy metal tolerance in plants by silicon: a review. Pedosphere 23:815–825
doi: 10.1016/S1002-0160(13)60073-9
Yan X, Wang J, Zhu L, WangJ LS, Kim LM (2021) Oxidative stress, growth inhibition, and DNA damage in earthworms induced by the combined pollution of typical neonicotinoid insecticides and heavy metals. Sci Tot Environ 754:141873
doi: 10.1016/j.scitotenv.2020.141873
Yang Y, Zhou X, Tie B, Peng L, Li H, Wang K, Zeng Q (2017) Comparison of three types of oil crop rotation systems for effective use and remediation of heavy metal contaminated agriculture soil. Chemosphere 188:148–156
doi: 10.1016/j.chemosphere.2017.08.140
Yang R, Berthold EC, McCurdy CR, da Silva Benevenute S, Brym ZT, Freeman JH (2020) Development of canabinoids in flowers of industrial hemp (Cannabis sativa L.): a pilot study. J Agric Food Chem 68:6058–6064
doi: 10.1021/acs.jafc.0c01211
Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565
doi: 10.1046/j.1365-3040.1999.00418.x
Zhao J, Xu Y, Wang W, Griffin J, Roozeboom K, Wang D (2020) Bioconversion of industrial hemp biomass for bioethanol production: a review. Fuel 281:118725
doi: 10.1016/j.fuel.2020.118725
Zhou MX, Dailly H, Renard ME, Han RM, Lutts S (2018) NaCl impact on Kosteletzkya pentacarpos seedlings simultaneously exposed to cadmium and zinc toxicities. Environ Sci Poll Res 25:17444–17456
doi: 10.1007/s11356-018-1865-x
Zielonka D, Szulc W, Skowrońska M, Rutkowska B, Russel S (2020) Hemp-based phytoaccumulation of heavy metals from municipal sewage sludge and photogypsum under field conditions. Agronomy 10:907
doi: 10.3390/agronomy10060907

Auteurs

Marie Luyckx (M)

Groupe de Recherche en Physiologie végétale, Earth and Life Institute (Agronomy), Université catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium.

Jean-François Hausman (JF)

Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Hautcharage, Luxembourg.

Mathilde Blanquet (M)

Groupe de Recherche en Physiologie végétale, Earth and Life Institute (Agronomy), Université catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium.

Gea Guerriero (G)

Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Hautcharage, Luxembourg.

Stanley Lutts (S)

Groupe de Recherche en Physiologie végétale, Earth and Life Institute (Agronomy), Université catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium. stanley.lutts@uclouvain.be.

Articles similaires

Cannabis Use During Early Pregnancy Following Recreational Cannabis Legalization.

Kelly C Young-Wolff, Natalie E Slama, Lyndsay A Avalos et al.
1.00
Humans Female Pregnancy California Adult
Nigeria Environmental Monitoring Solid Waste Waste Disposal Facilities Refuse Disposal
Cameroon Humans Uranium Trace Elements Environmental Monitoring
1.00
Oryza Agricultural Irrigation Potassium Sodium Soil

Classifications MeSH