Fungal sensing skin.
Biomaterials
Fungi
Sensing
Sensorial fusion
Soft robotics
Journal
Fungal biology and biotechnology
ISSN: 2054-3085
Titre abrégé: Fungal Biol Biotechnol
Pays: England
ID NLM: 101655873
Informations de publication
Date de publication:
17 Mar 2021
17 Mar 2021
Historique:
received:
25
11
2020
accepted:
10
03
2021
entrez:
18
3
2021
pubmed:
19
3
2021
medline:
19
3
2021
Statut:
epublish
Résumé
A fungal skin is a thin flexible sheet of a living homogeneous mycelium made by a filamentous fungus. The skin could be used in future living architectures of adaptive buildings and as a sensing living skin for soft self-growing/adaptive robots. In experimental laboratory studies we demonstrate that the fungal skin is capable for recognising mechanical and optical stimulation. The skin reacts differently to loading of a weight, removal of the weight, and switching illumination on and off. These are the first experimental evidences that fungal materials can be used not only as mechanical 'skeletons' in architecture and robotics but also as intelligent skins capable for recognition of external stimuli and sensorial fusion.
Sections du résumé
BACKGROUND
BACKGROUND
A fungal skin is a thin flexible sheet of a living homogeneous mycelium made by a filamentous fungus. The skin could be used in future living architectures of adaptive buildings and as a sensing living skin for soft self-growing/adaptive robots.
RESULTS
RESULTS
In experimental laboratory studies we demonstrate that the fungal skin is capable for recognising mechanical and optical stimulation. The skin reacts differently to loading of a weight, removal of the weight, and switching illumination on and off.
CONCLUSION
CONCLUSIONS
These are the first experimental evidences that fungal materials can be used not only as mechanical 'skeletons' in architecture and robotics but also as intelligent skins capable for recognition of external stimuli and sensorial fusion.
Identifiants
pubmed: 33731205
doi: 10.1186/s40694-021-00110-x
pii: 10.1186/s40694-021-00110-x
pmc: PMC7972235
doi:
Types de publication
Journal Article
Retracted Publication
Langues
eng
Pagination
3Subventions
Organisme : H2020 Excellent Science
ID : 858132
Commentaires et corrections
Type : RetractionIn
Références
Soni M, Dahiya R. Soft eskin: distributed touch sensing with harmonized energy and computing. Philos Trans R Soc A. 2020;378(2164):20190156.
doi: 10.1098/rsta.2019.0156
Ma M, Zhang Z, Liao Q, Yi F, Han L, Zhang G, Liu S, Liao X, Zhang Y. Self-powered artificial electronic skin for high-resolution pressure sensing. Nano Energy. 2017;32:389–96.
doi: 10.1016/j.nanoen.2017.01.004
Zhao S, Zhu R. Electronic skin with multifunction sensors based on thermosensation. Adv Mater. 2017;29(15):1606151.
doi: 10.1002/adma.201606151
Chou H-H, Nguyen A, Chortos A, To JW, Lu C, Mei J, Kurosawa T, Bae W-G, Tok JB-H, Bao Z. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat Commun. 2015;6(1):1–10.
Yang T, Wang W, Zhang H, Li X, Shi J, He Y, Zheng Q-S, Li Z, Zhu H. Tactile sensing system based on arrays of graphene woven microfabrics: electromechanical behavior and electronic skin application. ACS Nano. 2015;9(11):10867–75.
doi: 10.1021/acsnano.5b03851
Wang X, Dong L, Zhang H, Yu R, Pan C, Wang ZL. Recent progress in electronic skin. Adv Sci. 2015;2(10):1500169.
doi: 10.1002/advs.201500169
Pu X, Liu M, Chen X, Sun J, Du C, Zhang Y, Zhai J, Hu W, Wang ZL. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv. 2017;3(5):e1700015.
doi: 10.1126/sciadv.1700015
Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin. Nat Mater. 2016;15(9):937–50.
doi: 10.1038/nmat4671
Park S, Kim H, Vosgueritchian M, Cheon S, Kim H, Koo JH, Kim TR, Lee S, Schwartz G, Chang H, et al. Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes. Adv Mater. 2014;26(43):7324–32.
doi: 10.1002/adma.201402574
Núñez C G, Manjakkal L, Dahiya R. Energy autonomous electronic skin. NPJ Flexible Electron. 2019;3(1):1–24.
doi: 10.1038/s41528-018-0045-x
Wang C, Hwang D, Yu Z, Takei K, Park J, Chen T, Ma B, Javey A. User-interactive electronic skin for instantaneous pressure visualization. Nat Mater. 2013;12(10):899–904.
doi: 10.1038/nmat3711
Wang X, Gu Y, Xiong Z, Cui Z, Zhang T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater. 2014;26(9):1336–42.
doi: 10.1002/adma.201304248
Sekitani T, Someya T. Stretchable organic integrated circuits for large-area electronic skin surfaces. Mrs Bull. 2012;37(3):236–45.
doi: 10.1557/mrs.2012.42
Guo H, Lan C, Zhou Z, Sun P, Wei D, Li C. Transparent, flexible, and stretchable ws 2 based humidity sensors for electronic skin. Nanoscale. 2017;9(19):6246–53.
doi: 10.1039/C7NR01016H
Qiao Y, Wang Y, Tian H, Li M, Jian J, Wei Y, Tian Y, Wang D-Y, Pang Y, Geng X, et al. Multilayer graphene epidermal electronic skin. ACS Nano. 2018;12(9):8839–46.
doi: 10.1021/acsnano.8b02162
Zhao X, Hua Q, Yu R, Zhang Y, Pan C. Flexible, stretchable and wearable multifunctional sensor array as artificial electronic skin for static and dynamic strain mapping. Adv Electron Mater. 2015;1(7):1500142.
doi: 10.1002/aelm.201500142
Scalisi R, Paleari M, Favetto A, Stoppa M, Ariano P, Pandolfi P, Chiolerio A. Inkjet printed flexible electrodes for surface electromyography. Organ Electron. 2015;18:89–94.
doi: 10.1016/j.orgel.2014.12.017
Chiolerio A, Rivolo P, Porro S, Stassi S, Ricciardi S, Mandracci P, Canavese G, Bejtka K, Pirri CF. Inkjet-printed pedot: pss electrodes on plasma modified pdms nanocomposites: quantifying plasma treatment hardness. RSC Adv. 2014;4:51477.
doi: 10.1039/C4RA06878E
Chiolerio A, Adamatzky A. Tactile sensing and computing on a random network of conducting fluid channels. Flexible Print Electron. 2020;5:025006.
doi: 10.1088/2058-8585/ab906f
Adamatzky A, Ayres P, Belotti G, Wösten H. Fungal architecture position paper. Int J Unconvent Comput. 2019;14:397–441.
El-Hussieny H, Mehmood U, Mehdi Z, Jeong S-G, Usman M, Hawkes EW, Okarnura AM, Ryu J-H. Development and evaluation of an intuitive flexible interface for teleoperating soft growing robots, In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2018;4995–5002.
Sadeghi A, Mondini A, Mazzolai B. Toward self-growing soft robots inspired by plant roots and based on additive manufacturing technologies. Soft Robot. 2017;4(3):211–23.
doi: 10.1089/soro.2016.0080
Rieffel J, Knox D, Smith S, Trimmer B. Growing and evolving soft robots. Artif Life. 2014;20(1):143–62.
doi: 10.1162/ARTL_a_00101
Greer JD, Morimoto TK, Okamura AM, Hawkes EW. A soft, steerable continuum robot that grows via tip extension. Soft Robot. 2019;6(1):95–108.
doi: 10.1089/soro.2018.0034
Meyer V, Basenko EY, Benz JP, Braus GH, Caddick MX, Csukai M, de Vries RP, Endy D, Frisvad JC, Gunde-Cimerman N, Haarmann T, Hadar Y, Hansen K, Johnson RI, Keller NP, Kraševec N, Mortensen UH, Perez R, Ram AFJ, Record E, Ross P, Shapaval V, Steiniger C, van den Brink H, van Munster J, Yarden O, Wösten HAB. Growing a circular economy with fungal biotechnology: a white paper. Fungal Biol Biotechnol. 2020;7(1):5. https://doi.org/10.1186/s40694-020-00095-z .
doi: 10.1186/s40694-020-00095-z
pubmed: 32280481
pmcid: 7140391
Haneef M, Ceseracciu L, Canale C, Bayer IS, Heredia-Guerrero JA, Athanassiou A. Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci Rep. 2017;7(1):1–11.
doi: 10.1038/srep41292
Jones M, Mautner A, Luenco S, Bismarck A, John S. Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater Design. 2020;. https://doi.org/10.1016/j.matdes.2019.108397 .
doi: 10.1016/j.matdes.2019.108397
Wösten HAB. Filamentous fungi for the production of enzymes, chemicals and materials. Curr Opin Biotechnol 2019;59:65–70. https://doi.org/10.1016/J.COPBIO.2019.02.010 https://www.sciencedirect.com/science/article/abs/pii/S0958166918302283 .
Adamatzky A. Towards slime mould colour sensor: recognition of colours by physarum polycephalum. Organ Electron. 2013;14(12):3355–61.
doi: 10.1016/j.orgel.2013.10.004
Adamatzky A. Slime mould tactile sensor. Sensors Actuat B Chem. 2013;188:38–44.
doi: 10.1016/j.snb.2013.06.050
Whiting J G, de Lacy Costello B P, Adamatzky A. Towards slime mould chemical sensor: mapping chemical inputs onto electrical potential dynamics of physarum polycephalum. Sensors Actuat B Chem. 2014;191:844–53.
doi: 10.1016/j.snb.2013.10.064
Adamatzky A. On spiking behaviour of oyster fungi pleurotus djamor. Sci Rep. 2018;8(1):1–7.
doi: 10.1038/s41598-018-26007-1
Beasley AE, Powell AL, Adamatzky A. Capacitive storage in mycelium substrate, arXiv preprint arXiv:2003.07816 .
Beasley A, Abdelouahab M-S, Lozi R, Powell A, Adamatzky A. Mem-fractive properties of mushrooms, arXiv preprint arXiv:2002.06413v2 .
Hamlyn PF. Fabricating fungi. In: Glasman I, Lennox-Kerr P, editors. New applications. Textile Technology International, Sterling Publications Ltd: London; 1991. p. 254–7.
Hamlyn PF, Schmidt RJ. Potential therapeutic application of fungal filaments in wound management. Mycologist. 1994;8(4):147–52. https://doi.org/10.1016/S0269-915X(09)80176-6 .
doi: 10.1016/S0269-915X(09)80176-6
Su C-H, Sun C-S, Juan S-W, Hu C-H, Ke W-T, Sheu M-T. Fungal mycelia as the source of chitin and polysaccharides and their applications as skin substitutes. Biomaterials. 1997;18(17):1169–74.
doi: 10.1016/S0142-9612(97)00048-3
Su C-H, Sun C-S, Juan S-W, Ho H-O, Hu C-H, Sheu M-T. Development of fungal mycelia as skin substitutes: effects on wound healing and fibroblast. Biomaterials. 1999;20(1):61–8.
doi: 10.1016/S0142-9612(98)00139-2
Xu H, Liu L, Cao C, Lu W, Zhu Z, Guo Z, Li M, Wang X, Huang D, Wang S, et al. Wound healing activity of a skin substitute from residues of culinary-medicinal winter mushroom flammulina velutipes (agaricomycetes) cultivation. Int J Med Mushrooms. 2019;21(7):683–91.
doi: 10.1615/IntJMedMushrooms.2019031175
Narayanan KB, Zo SM, Han SS. Novel biomimetic chitin-glucan polysaccharide nano/microfibrous fungal-scaffolds for tissue engineering applications. Int J Biol Macromol. 2020;149:724–31. https://doi.org/10.1016/j.ijbiomac.2020.01.276 .
doi: 10.1016/j.ijbiomac.2020.01.276
pubmed: 32004611
Kovacs GT. Electronic sensors with living cellular components. Proc IEEE. 2003;91(6):915–29.
doi: 10.1109/JPROC.2003.813580
Wu C, Lillehoj PB, Wang P. Bioanalytical and chemical sensors using living taste, olfactory, and neural cells and tissues: a short review. Analyst. 2015;140(21):7048–61.
doi: 10.1039/C5AN01288K
Minzan K, Shimizu M, Miyasaka K, Ogura T, Nakai J, Ohkura M, Hosoda K. Toward living tactile sensors. In: Conference on biomimetic and biohybrid systems, Springer, 2013, p. 409–11.