Integration of AI and Machine Learning in Radiotherapy QA.
IMRT
VMAT
artificial intelligence
machine learning
quality assurance
radiotherapy
Journal
Frontiers in artificial intelligence
ISSN: 2624-8212
Titre abrégé: Front Artif Intell
Pays: Switzerland
ID NLM: 101770551
Informations de publication
Date de publication:
2020
2020
Historique:
received:
29
06
2020
accepted:
24
08
2020
entrez:
18
3
2021
pubmed:
19
3
2021
medline:
19
3
2021
Statut:
epublish
Résumé
The use of machine learning and other sophisticated models to aid in prediction and decision making has become widely popular across a breadth of disciplines. Within the greater diagnostic radiology, radiation oncology, and medical physics communities promising work is being performed in tissue classification and cancer staging, outcome prediction, automated segmentation, treatment planning, and quality assurance as well as other areas. In this article, machine learning approaches are explored, highlighting specific applications in machine and patient-specific quality assurance (QA). Machine learning can analyze multiple elements of a delivery system on its performance over time including the multileaf collimator (MLC), imaging system, mechanical and dosimetric parameters. Virtual Intensity-Modulated Radiation Therapy (IMRT) QA can predict passing rates using different measurement techniques, different treatment planning systems, and different treatment delivery machines across multiple institutions. Prediction of QA passing rates and other metrics can have profound implications on the current IMRT process. Here we cover general concepts of machine learning in dosimetry and various methods used in virtual IMRT QA, as well as their clinical applications.
Identifiants
pubmed: 33733216
doi: 10.3389/frai.2020.577620
pmc: PMC7861232
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
577620Subventions
Organisme : NCI NIH HHS
ID : P30 CA008748
Pays : United States
Informations de copyright
Copyright © 2020 Chan, Witztum and Valdes.
Références
Med Phys. 2019 Sep;46(9):3823-3832
pubmed: 31222758
Radiother Oncol. 2020 Dec;153:250-257
pubmed: 32712247
Front Oncol. 2018 Apr 17;8:110
pubmed: 29719815
Med Phys. 2016 Jul;43(7):4209
pubmed: 27370140
Ann N Y Acad Sci. 2017 Jan;1387(1):84-94
pubmed: 27627049
Phys Med Biol. 2019 Apr 29;64(9):095017
pubmed: 30921785
Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):19887-19893
pubmed: 31527280
J Appl Clin Med Phys. 2020 Jul;21(7):128-134
pubmed: 32419245
Radiother Oncol. 2020 Dec;153:122-129
pubmed: 33039427
Phys Med Biol. 2019 Apr 10;64(8):085010
pubmed: 30917344
Med Phys. 2019 Oct;46(10):4666-4675
pubmed: 31386761
Med Phys. 2020 Apr;47(4):1421-1430
pubmed: 31922604
Med Phys. 2018 Jul 31;:
pubmed: 30066388
J Appl Clin Med Phys. 2017 Sep;18(5):279-284
pubmed: 28815994
J Radiat Res. 2019 Oct 23;60(5):603-611
pubmed: 31147684
Med Phys. 2020 Jun;47(5):e168-e177
pubmed: 30768796
Med Phys. 2019 Feb;46(2):456-464
pubmed: 30548601
Med Phys. 2018 May;45(5):2243-2251
pubmed: 29500818
Phys Med Biol. 2020 Nov 27;65(23):235023
pubmed: 33245054
Med Phys. 2019 Apr;46(4):1914-1921
pubmed: 30734324
Med Phys. 2016 Jul;43(7):4323
pubmed: 27370147
Med Phys. 2021 Mar;48(3):978-990
pubmed: 33332618
Int J Radiat Oncol Biol Phys. 2019 Nov 15;105(4):893-902
pubmed: 31377162
Med Phys. 2018 Jun;45(6):2672-2680
pubmed: 29603278
Phys Med Biol. 2016 Mar 21;61(6):2514-31
pubmed: 26948678