Retroviral prototype foamy virus intasome binding to a nucleosome target does not determine integration efficiency.


Journal

The Journal of biological chemistry
ISSN: 1083-351X
Titre abrégé: J Biol Chem
Pays: United States
ID NLM: 2985121R

Informations de publication

Date de publication:
Historique:
received: 07 12 2020
revised: 12 03 2021
accepted: 16 03 2021
pubmed: 22 3 2021
medline: 24 8 2021
entrez: 21 3 2021
Statut: ppublish

Résumé

Retroviral integrases must navigate host DNA packaged as chromatin during integration of the viral genome. Prototype foamy virus (PFV) integrase (IN) forms a tetramer bound to two viral DNA (vDNA) ends in a complex termed an intasome. PFV IN consists of four domains: the amino terminal extension domain (NED), amino terminal domain (NTD), catalytic core domain (CCD), and carboxyl terminal domain (CTD). The domains of the two inner IN protomers have been visualized, as well as the CCDs of the two outer IN protomers. However, the roles of the amino and carboxyl terminal domains of the PFV intasome outer subunits during integration to a nucleosome target substrate are not clear. We used the well-characterized 601 nucleosome to assay integration activity as well as intasome binding. PFV intasome integration to 601 nucleosomes occurs in clusters at four independent sites. We find that the outer protomer NED and NTD domains have no significant effects on integration efficiency, site selection, or binding. The CTDs of the outer PFV intasome subunits dramatically affect nucleosome binding but have little effect on total integration efficiency. The outer PFV IN CTDs did significantly alter the integration efficiency at one site. Histone tails also significantly affect intasome binding, but have little impact on PFV integration efficiency or site selection. These results indicate that binding to nucleosomes does not correlate with integration efficiency and suggests most intasome-binding events are unproductive.

Identifiants

pubmed: 33744295
pii: S0021-9258(21)00328-8
doi: 10.1016/j.jbc.2021.100550
pmc: PMC8050864
pii:
doi:

Substances chimiques

Chromatin 0
DNA, Viral 0
Histones 0
Nucleosomes 0
Viral Proteins 0
Integrases EC 2.7.7.-

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

100550

Subventions

Organisme : NIAID NIH HHS
ID : R01 AI126742
Pays : United States
Organisme : NIAID NIH HHS
ID : R21 AI099854
Pays : United States

Informations de copyright

Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

Déclaration de conflit d'intérêts

Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article.

Références

J Biol Chem. 2008 Nov 14;283(46):31802-12
pubmed: 18801737
J Biol Chem. 1994 Oct 7;269(40):25031-41
pubmed: 7929189
Cell. 1992 May 29;69(5):769-80
pubmed: 1317268
Sci Rep. 2019 Jan 15;9(1):132
pubmed: 30644416
J Virol. 2017 Mar 13;91(7):
pubmed: 28122976
Epigenetics Chromatin. 2010 Jul 01;3(1):13
pubmed: 20594331
J Biol Chem. 2007 Mar 16;282(11):7930-8
pubmed: 17234628
J Mol Biol. 1998 Feb 13;276(1):19-42
pubmed: 9514715
Mol Cell. 2003 Jul;12(1):233-46
pubmed: 12887908
Nat Commun. 2019 Sep 13;10(1):4189
pubmed: 31519882
Chem Rev. 2015 Mar 25;115(6):2255-73
pubmed: 25495456
J Mol Biol. 2010 Oct 15;403(1):1-10
pubmed: 20800598
PLoS Genet. 2012;8(5):e1002717
pubmed: 22615581
Nature. 2016 Feb 18;530(7590):358-61
pubmed: 26887496
Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5913-7
pubmed: 8016088
Biochemistry. 1994 Feb 22;33(7):1797-803
pubmed: 8110781
Curr Opin Struct Biol. 2017 Dec;47:23-29
pubmed: 28458055
EMBO J. 1994 Oct 3;13(19):4704-14
pubmed: 7925312
J Vis Exp. 2018 Mar 19;(133):
pubmed: 29608167
Nucleic Acids Res. 2009 Jan;37(1):243-55
pubmed: 19036793
Nature. 2010 Nov 11;468(7321):326-9
pubmed: 21068843
Nucleic Acids Res. 2012 Jul;40(13):6338-52
pubmed: 22453276
Nat Struct Mol Biol. 2009 Feb;16(2):124-9
pubmed: 19136959
J Biol Chem. 2003 Jan 3;278(1):372-81
pubmed: 12407101
Methods Enzymol. 2012;513:29-58
pubmed: 22929764
Methods Enzymol. 2004;375:23-44
pubmed: 14870657
Mol Cell. 2009 Dec 25;36(6):1086-94
pubmed: 20064472
Nat Commun. 2016 Apr 25;7:11409
pubmed: 27108531
Science. 2017 Jan 6;355(6320):93-95
pubmed: 28059770
Nature. 2015 Jul 16;523(7560):366-9
pubmed: 26061770
J Biol Chem. 2015 Sep 11;290(37):22612-21
pubmed: 26175159
Nature. 2010 Mar 11;464(7286):232-6
pubmed: 20118915
Nature. 2010 Sep 30;467(7315):562-6
pubmed: 20739938
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):12036-41
pubmed: 23818621
J Biol Chem. 2003 May 16;278(20):18289-96
pubmed: 12624104
Nucleic Acids Res. 1999 Feb 15;27(4):1063-9
pubmed: 9927740
Nucleic Acids Res. 2012 Nov 1;40(20):10215-27
pubmed: 22965129
Genes Dev. 2007 Jul 15;21(14):1767-78
pubmed: 17639082
EMBO J. 2006 Jul 12;25(13):3123-32
pubmed: 16778764
Nucleic Acids Res. 2007;35(1):113-24
pubmed: 17158150
Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1183-8
pubmed: 9037027
PLoS One. 2019 Mar 13;14(3):e0212764
pubmed: 30865665
Cell Rep. 2013 Nov 27;5(4):886-94
pubmed: 24183673
Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3743-7
pubmed: 12644712
J Mol Biol. 1989 Apr 5;206(3):451-63
pubmed: 2716057
Nature. 1997 Sep 18;389(6648):251-60
pubmed: 9305837
Nucleic Acids Res. 2016 Jan 8;44(1):364-76
pubmed: 26657642
Protein Sci. 2016 Feb;25(2):472-8
pubmed: 26537415
Nature. 2016 Feb 18;530(7590):362-6
pubmed: 26887497
Mol Cell Biol. 2002 Oct;22(20):7147-57
pubmed: 12242292

Auteurs

Randi M Kotlar (RM)

Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA.

Nathan D Jones (ND)

Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.

Gayan Senavirathne (G)

Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.

Anne M Gardner (AM)

Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.

Ryan K Messer (RK)

Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.

Yow Yong Tan (YY)

Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.

Anthony J Rabe (AJ)

Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.

Richard Fishel (R)

Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.

Kristine E Yoder (KE)

Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA. Electronic address: yoder.176@osu.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH