Multiaxial pulsatile dynamics of the thoracic aorta and impact of thoracic endovascular repair.

2D, two-dimensional 3D, three-dimensional Aortic aneurysm Aortic dissection CTA, computed tomography angiography Cardiac pulsatility Deformation TEVAR TEVAR, thoracic endovascular aortic repair Thoracic aorta

Journal

European journal of radiology open
ISSN: 2352-0477
Titre abrégé: Eur J Radiol Open
Pays: England
ID NLM: 101650225

Informations de publication

Date de publication:
2021
Historique:
received: 04 01 2021
revised: 22 02 2021
accepted: 24 02 2021
entrez: 22 3 2021
pubmed: 23 3 2021
medline: 23 3 2021
Statut: epublish

Résumé

The thoracic aorta is a highly mobile organ whose dynamics are altered by thoracic endovascular aorta repair (TEVAR). The aim of this study was to quantify cardiac pulsatility-induced multi-axial deformation of the thoracic aorta before and after descending aortic TEVAR. Eleven TEVAR patients (8 males and 3 females, age 57-89) underwent retrospective cardiac-gated CT angiography before and after TEVAR. 3D geometric models of the thoracic aorta were constructed, and lumen centerlines, inner and outer surface curves, and cross-sections were extracted to measure aortic arclength, centerline, inner surface, and outer surface longitudinal curvatures, as well as cross-sectional effective diameter and eccentricity for the ascending and stented aortic portions. From pre- to post-TEVAR, arclength deformation was increased at the ascending aorta from 5.9 ± 3.1 % to 8.8 ± 4.4 % (P < 0.05), and decreased at the stented aorta from 7.5 ± 5.1 % to 2.7 ± 2.5 % (P < 0.05). Longitudinal curvature and diametric deformations were reduced at the stented aorta. Centerline curvature, inner surface curvature, and cross-sectional eccentricity deformations were increased at the distal ascending aorta. Deformations were reduced in the stented thoracic aorta after TEVAR, but increased in the ascending aorta near the aortic arch, possibly as a compensatory mechanism to maintain overall thoracic compliance in the presence of reduced deformation in the stiffened stented aorta.

Identifiants

pubmed: 33748348
doi: 10.1016/j.ejro.2021.100333
pii: S2352-0477(21)00013-7
pmc: PMC7957153
doi:

Types de publication

Journal Article

Langues

eng

Pagination

100333

Informations de copyright

© 2021 The Authors.

Déclaration de conflit d'intérêts

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: GS is a consultant for W. L. Gore & Associates and Terumo. CPC is a consultant for W. L. Gore & Associates, Terumo, and Endospan. MDD is a consultant for W. L. Gore & Associates and Cook Medical. JB, YDZ, and JTL have nothing to disclose.

Références

J Thorac Cardiovasc Surg. 2007 Feb;133(2):369-77
pubmed: 17258566
Semin Thorac Cardiovasc Surg. 2020 Summer;32(2):211-217
pubmed: 31546005
Ann Vasc Surg. 2019 Nov;61:134-141
pubmed: 31344466
Clin Physiol Funct Imaging. 2006 Sep;26(5):257-62
pubmed: 16939501
Eur J Radiol. 2012 Jan;81(1):158-64
pubmed: 20850234
J Biomech Eng. 2019 Oct 01;:
pubmed: 31633168
Eur J Cardiothorac Surg. 2017 Oct 1;52(4):718-724
pubmed: 29156021
Atherosclerosis. 1993 Aug;102(1):37-49
pubmed: 8257451
Ann Biomed Eng. 2009 Jan;37(1):14-33
pubmed: 19002584
Aorta (Stamford). 2017 Apr 01;5(2):42-52
pubmed: 28868315
Langenbecks Arch Surg. 2015 May;400(4):523-9
pubmed: 25702140
Vascular. 2019 Apr;27(2):181-189
pubmed: 30426849
Comput Methods Biomech Biomed Engin. 2018 Jan;21(1):65-74
pubmed: 29313372
Ann Vasc Surg. 2017 Jan;38:233-241
pubmed: 27522975
J Am Coll Cardiol. 2010 Mar 9;55(10):986-1001
pubmed: 20137879
Eur J Vasc Endovasc Surg. 2015 Jul;50(1):37-43
pubmed: 26036810
J Vasc Surg. 2020 Oct;72(4):1196-1205
pubmed: 32035770
Eur J Vasc Endovasc Surg. 2003 Aug;26(2):195-204
pubmed: 12917838
J Vasc Surg. 2009 Apr;49(4):1029-36
pubmed: 19341890
Circulation. 2004 Feb 17;109(6):763-9
pubmed: 14970113
Ann Vasc Surg. 2009 May-Jun;23(3):291-7
pubmed: 18809281
J Vasc Interv Radiol. 2014 Dec;25(12):1903-11
pubmed: 25066591
Ann Vasc Surg. 2018 Jan;46:83-89
pubmed: 28887263
Eur J Radiol. 2009 Dec;72(3):483-8
pubmed: 18805663
Circulation. 2015 May 19;131(20):1783-95
pubmed: 25904646
Med Biol Eng Comput. 2018 Sep;56(9):1659-1668
pubmed: 29500737
Cardiovasc Intervent Radiol. 2014 Feb;37(1):69-76
pubmed: 23483287
J Patient Cent Res Rev. 2017 Aug 10;4(3):104-113
pubmed: 31413977
Vasc Endovascular Surg. 2018 Apr;52(3):173-180
pubmed: 29400263
Eur J Vasc Endovasc Surg. 2017 Feb;53(2):199-205
pubmed: 28027889

Auteurs

Ga-Young Suh (GY)

Department of Biomedical Engineering, California State University, Long Beach: 1250 Bellflower Blvd, Long Beach, CA, 90840, USA.
Department of Vascular Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA, 94305, USA.

Johan Bondesson (J)

Division of Dynamics, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.

Yufei D Zhu (YD)

Department of Vascular Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA, 94305, USA.

Jason T Lee (JT)

Department of Vascular Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA, 94305, USA.

Michael D Dake (MD)

Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA, 94305, USA.

Christopher P Cheng (CP)

Department of Vascular Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA, 94305, USA.

Classifications MeSH