Discovery of Protein Modifications Using Differential Tandem Mass Spectrometry Proteomics.

SAMPEI functional regulation itaconate macrophages mass spectrometry metabolism post-translational chemical modification signaling software spectral alignment

Journal

Journal of proteome research
ISSN: 1535-3907
Titre abrégé: J Proteome Res
Pays: United States
ID NLM: 101128775

Informations de publication

Date de publication:
02 04 2021
Historique:
pubmed: 23 3 2021
medline: 22 6 2021
entrez: 22 3 2021
Statut: ppublish

Résumé

Recent studies have revealed diverse amino acid, post-translational, and noncanonical modifications of proteins in diverse organisms and tissues. However, their unbiased detection and analysis remain hindered by technical limitations. Here, we present a spectral alignment method for the identification of protein modifications using high-resolution mass spectrometry proteomics. Termed SAMPEI for spectral alignment-based modified peptide identification, this open-source algorithm is designed for the discovery of functional protein and peptide signaling modifications, without prior knowledge of their identities. Using synthetic standards and controlled chemical labeling experiments, we demonstrate its high specificity and sensitivity for the discovery of substoichiometric protein modifications in complex cellular extracts. SAMPEI mapping of mouse macrophage differentiation revealed diverse post-translational protein modifications, including distinct forms of cysteine itaconatylation. SAMPEI's robust parametrization and versatility are expected to facilitate the discovery of biological modifications of diverse macromolecules. SAMPEI is implemented as a Python package and is available open-source from BioConda and GitHub (https://github.com/FenyoLab/SAMPEI).

Identifiants

pubmed: 33749263
doi: 10.1021/acs.jproteome.0c00638
pmc: PMC8341206
mid: NIHMS1728377
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1835-1848

Subventions

Organisme : NCI NIH HHS
ID : R01 CA204396
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA008748
Pays : United States
Organisme : NCI NIH HHS
ID : R21 CA235285
Pays : United States
Organisme : NCI NIH HHS
ID : R37 CA251543
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA214812
Pays : United States

Références

Mol Cell Proteomics. 2011 Mar;10(3):M110.000513
pubmed: 21148632
J Proteome Res. 2011 Apr 1;10(4):1785-93
pubmed: 21309581
Nat Biotechnol. 2015 Jul;33(7):743-9
pubmed: 26076430
Proteomics. 2002 Oct;2(10):1426-34
pubmed: 12422359
J Proteome Res. 2014 Oct 3;13(10):4488-91
pubmed: 25182276
Anal Chem. 2004 Apr 15;76(8):2220-30
pubmed: 15080731
Nat Methods. 2017 May;14(5):513-520
pubmed: 28394336
Anal Chem. 2018 Mar 6;90(5):3156-3164
pubmed: 29381867
Sci Rep. 2018 Jan 9;8(1):164
pubmed: 29317699
Arch Biochem Biophys. 2017 Mar 1;617:94-100
pubmed: 27769838
Protein Cell. 2020 Jun;11(6):401-416
pubmed: 32356279
Mol Cell Proteomics. 2006 Dec;5(12):2384-91
pubmed: 17015437
Nature. 2014 May 29;509(7502):582-7
pubmed: 24870543
J Proteome Res. 2011 Dec 2;10(12):5296-301
pubmed: 22010998
Nucleic Acids Res. 2013 Jan;41(Database issue):D1063-9
pubmed: 23203882
Nat Rev Mol Cell Biol. 2004 Sep;5(9):699-711
pubmed: 15340378
J Proteome Res. 2010 Apr 5;9(4):1716-26
pubmed: 20131910
J Proteome Res. 2015 Nov 6;14(11):4714-20
pubmed: 26418581
J Proteome Res. 2013 Sep 6;12(9):3831-42
pubmed: 23919725
Anal Chem. 2002 Oct 15;74(20):5383-92
pubmed: 12403597
Nat Chem Biol. 2018 Feb 14;14(3):206-214
pubmed: 29443976
Nat Biotechnol. 2018 Oct 08;:
pubmed: 30295672
J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89
pubmed: 24226387
Elife. 2020 Dec 07;9:
pubmed: 33284109
Nature. 2003 Mar 13;422(6928):198-207
pubmed: 12634793
Curr Opin Chem Biol. 2020 Feb;54:28-36
pubmed: 31812894
Nat Biotechnol. 2003 Mar;21(3):255-61
pubmed: 12610572
Mol Cell Proteomics. 2018 Sep;17(9):1850-1863
pubmed: 29848782
Nature. 2018 Apr 5;556(7699):113-117
pubmed: 29590092
Genome Res. 2001 Feb;11(2):290-9
pubmed: 11157792
Int J Mass Spectrom. 2015 Feb 1;377:719-717
pubmed: 25844058
Nature. 2011 Apr 28;472(7344):476-80
pubmed: 21525932
Curr Opin Chem Biol. 2008 Feb;12(1):18-24
pubmed: 18282483
Nat Biotechnol. 2008 Dec;26(12):1367-72
pubmed: 19029910
J Biol Chem. 2016 Jul 1;291(27):14274-14284
pubmed: 27189937
Anal Chem. 2007 Feb 15;79(4):1393-400
pubmed: 17243770
J Proteome Res. 2011 Apr 1;10(4):1794-805
pubmed: 21254760
J Proteome Res. 2010 Feb 5;9(2):700-7
pubmed: 19947654
Nucleic Acids Res. 2017 Jan 4;45(D1):D158-D169
pubmed: 27899622
Mol Cell Proteomics. 2012 Apr;11(4):M111.010199
pubmed: 22186716
Nat Methods. 2013 Aug;10(8):730-6
pubmed: 23921808
Nature. 2013 Oct 24;502(7472):489-98
pubmed: 24153302
Methods Mol Med. 2001;57:297-305
pubmed: 21340906
Sci Rep. 2015 Jul 30;5:12524
pubmed: 26224331
Anal Chem. 1997 Dec 1;69(23):4741-50
pubmed: 9406524
Nat Metab. 2019 Jul;1(7):731-742
pubmed: 32259027
Proteomics. 2004 Jun;4(6):1534-6
pubmed: 15174123
Nat Biotechnol. 2005 Dec;23(12):1562-7
pubmed: 16311586
Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7900-5
pubmed: 12060738
J Proteome Res. 2013 Aug 2;12(8):3586-98
pubmed: 23768245
J Proteome Res. 2011 Jul 1;10(7):2930-6
pubmed: 21609001
J Proteome Res. 2006 Aug;5(8):1843-9
pubmed: 16889405
Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6140-5
pubmed: 17404225
Anal Chem. 1998 Sep 1;70(17):3557-65
pubmed: 9737207
PLoS One. 2018 Mar 14;13(3):e0194126
pubmed: 29538444
Chem Rev. 2013 Jul 10;113(7):4633-79
pubmed: 23514336
J Proteome Res. 2018 Nov 2;17(11):3681-3692
pubmed: 30295032
Nat Commun. 2013;4:2171
pubmed: 23863870
J Proteome Res. 2009 Oct;8(10):4418-27
pubmed: 19658439
Bioinformatics. 2004 Jun 12;20(9):1466-7
pubmed: 14976030
Nat Chem Biol. 2019 Apr;15(4):391-400
pubmed: 30718813
Anal Chem. 1994 Dec 15;66(24):4390-9
pubmed: 7847635
Nature. 2019 Oct;574(7779):575-580
pubmed: 31645732
Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16163-8
pubmed: 19805274
J Chem Inf Model. 2013 May 24;53(5):1223-8
pubmed: 23480664
J Proteome Res. 2019 Oct 4;18(10):3792-3799
pubmed: 31448616
Nat Methods. 2013 Mar;10(3):186-7
pubmed: 23443629
J Am Chem Soc. 2011 Oct 19;133(41):16386-9
pubmed: 21919507
Nature. 2016 Sep 14;537(7620):347-55
pubmed: 27629641
Methods Mol Biol. 2017;1550:339-368
pubmed: 28188540
Science. 2020 Apr 10;368(6487):197-201
pubmed: 32273471
Nat Biotechnol. 2019 Apr;37(4):469-479
pubmed: 30936560

Auteurs

Paolo Cifani (P)

Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10021, United States.

Zhi Li (Z)

Institute for Systems Genetics, NYU Grossman School of Medicine, New York, New York 10016, United States.
Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, New York 10016, United States.

Danmeng Luo (D)

Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10021, United States.

Mark Grivainis (M)

Institute for Systems Genetics, NYU Grossman School of Medicine, New York, New York 10016, United States.

Andrew M Intlekofer (AM)

Human Oncology & Pathogenesis Program and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10021, United States.

David Fenyö (D)

Institute for Systems Genetics, NYU Grossman School of Medicine, New York, New York 10016, United States.
Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, New York 10016, United States.

Alex Kentsis (A)

Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10021, United States.
Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, and Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, New York, New York 10021, United States.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH