Benefits and costs of hosting facultative symbionts in plant-sucking insects: A meta-analysis.
aphid
defensive symbiont
hemiptera
heteroptera
life-history
meta-analysis
parasitoid
stink bug
trade-off
whitefly
Journal
Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
received:
18
08
2020
accepted:
18
03
2021
pubmed:
24
3
2021
medline:
22
6
2021
entrez:
23
3
2021
Statut:
ppublish
Résumé
Many animals have evolved associations with symbiotic microbes that benefit the host through increased growth, lifespan, and survival. Some interactions are obligate (essential for survival) while others are facultative (usually beneficial but not essential). Not all individuals host all facultative symbionts in a population, and thus there is probably a trade-off between the cost of hosting these symbionts and the benefits they confer to the host. Plant-sucking insects have been one of the most important models to test these costs and benefits experimentally. This research is now moving beyond the description of symbiont effects towards understanding the mechanisms of action, and their role in the wider ecological community. We present a quantitative and systematic analysis of the published evidence exploring this question. We found that whitefly and true bugs experience benefits through increased growth and fecundity, whereas aphids experience costs to their fecundity but benefits through increased resistance to natural enemies. We also report the lack of data in some plant-sucking groups, and explore variation in effect strengths and directions across aphid host, symbiont and plant species thus highlighting the importance of considering the context dependency of these interactions.
Banques de données
Dryad
['10.5061/dryad.7h44j0zt5']
Types de publication
Journal Article
Meta-Analysis
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2483-2494Subventions
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/S010556/1
Pays : United Kingdom
Informations de copyright
© 2021 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.
Références
Ahmed, M. Z., De Barro, P. J., Ren, S.-X., Greeff, J. M., & Qiu, B.-L. (2013). Evidence for horizontal transmission of secondary endosymbionts in the Bemisia tabaci cryptic species complex. PLoS One, 8(1), e53084. https://doi.org/10.1371/journal.pone.0053084
Asiimwe, P., Kelly, S. E., & Hunter, M. S. (2014). Symbiont infection affects whitefly dynamics in the field. Basic and Applied Ecology, 15(6), 507-515. https://doi.org/10.1016/j.baae.2014.08.005.
Bennett, G. M., & Moran, N. A. (2015). Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. Proceedings of the National Academy of Sciences, 112(33), 10169-10176.
Brownlie, J. C., & Johnson, K. N. (2009). Symbiont-mediated protection in insect hosts. Trends in Microbiology, 17(8), 348-354.
Caspi-Fluger, A., Inbar, M., Mozes-Daube, N., Katzir, N., Portnoy, V., Belausov, E., Hunter, M. S., & Zchori-Fein, E. (2012). Horizontal transmission of the insect symbiont Rickettsia is plant-mediated. Proceedings of the Royal Society of London B. Biological Sciences, 279(1734), 1791-1796.
Chen, K. W., & Chen, Y. (2018). Slow-growth high-mortality: A meta-analysis for insects. Insect Science, 25(2), 337-351. https://doi.org/10.1111/1744-7917.12399
Chrostek, E., Pelz-Stelinski, K., Hurst, G. D. D., & Hughes, G. L. (2017). Horizontal transmission of intracellular insect symbionts via plants. Frontiers in Microbiology, 8, 2237. https://doi.org/10.3389/fmicb.2017.02237.
Dillon, R., & Dillon, V. (2004). The gut bacteria of insects: nonpathogenic interactions. Annual Reviews in Entomology, 49(1), 71-92.
Douglas, A. (1998). Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annual Review of Entomology, 43(1), 17-37.
Feldhaar, H. (2011). Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecological Entomology, 36(5), 533-543. https://doi.org/10.1111/j.1365-2311.2011.01318.x
Ferrari, J., Darby, A. C., Daniell, T. J., Godfray, H. C. J., & Douglas, A. E. (2004). Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecological Entomology, 29(1), 60-65.
Ferrari, J., Godfray, H. C. J., Faulconbridge, A. S., Prior, K., & Via, S. (2006). Population differentiation and genetic variation in host choice among pea aphids from eight host plant genera. Evolution, 60(8), 1574-1584. https://doi.org/10.1111/j.0014-3820.2006.tb00502.x
Flórez, L. V., Biedermann, P. H. W., Engl, T., & Kaltenpoth, M. (2015). Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Natural Product Reports, 32(7), 904-936. https://doi.org/10.1039/c5np00010f.
Frago, E., Dicke, M., & Godfray, H. C. J. (2012). Insect symbionts as hidden players in insect-plant interactions. Trends in Ecology & Evolution, 27(12), 705-711. https://doi.org/10.1016/j.tree.2012.08.013
Frago, E., Zytynska, S. E., & Fatouros, N. E. (2020). Microbial symbionts of herbivorous species across the insect tree. K. M. Oliver & J. A. Russell (Eds.), Mechanisms Underlying Microbial Symbiosis (pp. 111-159). Academic Press Inc.
Guay, J. F., Boudreault, S., Michaud, D., & Cloutier, C. (2009). Impact of environmental stress on aphid clonal resistance to parasitoids: Role of Hamiltonella defensa bacterial symbiosis in association with a new facultative symbiont of the pea aphid. Journal of Insect Physiology, 55(10), 919-926. https://doi.org/10.1016/j.jinsphys.2009.06.006.
Gueguen, G., Vavre, F., Gnankine, O., Peterschmitt, M., Charif, D., Chiel, E., Gottlieb, Y., Ghanim, M., Zchori-fein, E., & Fleury, F. (2010). Endosymbiont metacommunities, mtDNA diversity and the evolution of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex. Molecular Ecology, 19(19), 4365-4376. https://doi.org/10.1111/j.1365-294X.2010.04775.x.
Guo, J., Hatt, S., He, K., Chen, J., Francis, F., & Wang, Z. (2017). Nine facultative endosymbionts in aphids. A Review. Journal of Asia-Pacific Entomology, 20, 794-801.
Hackett, S. C., Karley, A. J., & Bennett, A. E. (2013). Unpredicted impacts of insect endosymbionts on interactions between soil organisms, plants and aphids. Proceedings of the Royal Society B-Biological Sciences, 280(1768), 20131275. https://doi.org/10.1098/rspb.2013.1275.
Haine, E. R. (2008). Symbiont-mediated protection. Proceedings of the Royal Society B: Biological Sciences, 275(1633), 353-361. https://doi.org/10.1098/rspb.2007.1211.
Hammer, T. J., & Bowers, M. D. (2015). Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia, 179(1), 1-14. https://doi.org/10.1007/s00442-015-3327-1
Harrer, M., Cuijpers, P., Furukawa, T., & Ebert, D. D. (2019). dmetar: Companion R package for the Guide ‘Doing Meta-Analysis in R'. Retrieved from http://doi.org/10.5281/zenodo.2551803
Heyworth, E. R., & Ferrari, J. (2016). Heat stress affects facultative symbiont-mediated protection from a parasitoid wasp. PLoS One, 11(11), e0167180. https://doi.org/10.1371/journal.pone.0167180
Hosokawa, T., Kikuchi, Y., Nikoh, N., Shimada, M., & Fukatsu, T. (2006). Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLOS Biology, 4(10), e337. https://doi.org/10.1371/journal.pbio.0040337
Jaenike, J., & Brekke, T. D. (2011). Defensive endosymbionts: a cryptic trophic level in community ecology. Ecology Letters, 14(2), 150-155. https://doi.org/10.1111/j.1461-0248.2010.01564.x
Johnson, K. P., Dietrich, C. H., Friedrich, F., Beutel, R. G., Wipfler, B., Peters, R. S., Allen, J. M., Petersen, M., Donath, A., Walden, K. K. O., Kozlov, A. M., Podsiadlowski, L., Mayer, C., Meusemann, K., Vasilikopoulos, A., Waterhouse, R. M., Cameron, S. L., Weirauch, C., Swanson, D. R., … Yoshizawa, K. (2018). Phylogenomics and the evolution of hemipteroid insects. Proceedings of the National Academy of Sciences, 115(50), 12775-12780. https://doi.org/10.1073/pnas.1815820115
Karamipour, N., Fathipour, Y., & Mehrabadi, M. (2016). Gammaproteobacteria as essential primary symbionts in the striped shield bug, Graphosoma lineatum (Hemiptera: Pentatomidae). Scientific Reports, 6(1), 1-13. https://doi.org/10.1038/srep33168
Kashkouli, M., Fathipour, Y., & Mehrabadi, M. (2019). Potential management tactics for pistachio stink bugs, Brachynema germari, Acrosternum heegeri and Acrosternum arabicum (Hemiptera: Pentatomidae): high temperature and chemical surface sterilants leading to symbiont suppression. Journal of Economic Entomology, 112(1), 244-254.
Kikuchi, Y., Hayatsu, M., Hosokawa, T., Nagayama, A., Tago, K., & Fukatsu, T. (2012). Symbiont-mediated insecticide resistance. Proceedings of the National Academy of Sciences, 109(22), 8618-8622. https://doi.org/10.1073/pnas.1200231109
Kikuchi, Y., Hosokawa, T., & Fukatsu, T. (2011). Specific developmental window for establishment of an insect-microbe gut symbiosis. Applied and Environmental Microbiology, 77(12), 4075-4081. https://doi.org/10.1128/AEM.00358-11
Lamb, R. J., MacKay, P. A., & Migui, S. M. (2009). Measuring the performance of aphids: fecundity versus biomass1. The Canadian Entomologist, 141(4), 401-405.
Lee, J. B., Park, K.-E., Lee, S. A., Jang, S. H., Eo, H. J., Jang, H. A., Kim, C.-H., Ohbayashi, T., Matsuura, Y. U., Kikuchi, Y., Futahashi, R., Fukatsu, T., & Lee, B. L. (2017). Gut symbiotic bacteria stimulate insect growth and egg production by modulating hexamerin and vitellogenin gene expression. Developmental & Comparative Immunology, 69, 12-22. https://doi.org/10.1016/j.dci.2016.11.019
Li, F., Hua, H., Ali, A., & Hou, M. (2019). Characterization of a Bacterial Symbiont Asaia sp. in the White-Backed Planthopper, Sogatella furcifera, and Its Effects on Host Fitness. Frontiers in Microbiology, 10, 2179.
Martin, J. H., Mifsud, D., & Rapisarda, C. (2000). The whiteflies (Hemiptera: Aleyrodidae) of Europe and the Mediterranean basin. Bulletin of Entomological Research, 90(5), 407-448. https://doi.org/10.1017/S0007485300000547
Mathé-Hubert, H., Kaech, H., Hertaeg, C., Jaenike, J., & Vorburger, C. (2019). Nonrandom associations of maternally transmitted symbionts in insects: The roles of drift versus biased cotransmission and selection. Molecular Ecology, 28(24), 5330-5346. https://doi.org/10.1111/mec.15206.
McFall-Ngai, M., Hadfield, M. G., Bosch, T. C. G., Carey, H. V., Domazet-Lošo, T., Douglas, A. E., Dubilier, N., Eberl, G., Fukami, T., Gilbert, S. F., Hentschel, U., King, N., Kjelleberg, S., Knoll, A. H., Kremer, N., Mazmanian, S. K., Metcalf, J. L., Nealson, K., Pierce, N. E., … Wernegreen, J. J. (2013). Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences, 110(9), 3229-3236. https://doi.org/10.1073/pnas.1218525110
McLean, A., van Asch, M., Ferrari, J., & Godfray, H. (2011). Effects of bacterial secondary symbionts on host plant use in pea aphids. Proceedings of the Royal Society B: Biological Sciences, 278(1706), 760. https://doi.org/10.1098/rspb.2010.1654
Moran, N. A., Ochman, H., & Hammer, T. J. (2019). Evolutionary and ecological consequences of gut microbial communities. Annual Review of Ecology, Evolution, and Systematics, 50, 451-475. https://doi.org/10.1146/annurev-ecolsys-110617-062453
Ohbayashi, T., Itoh, H., Lachat, J., Kikuchi, Y., & Mergaert, P. (2019). Burkholderia gut symbionts associated with European and Japanese populations of the dock bug Coreus marginatus (Coreoidea: Coreidae). Microbes and Environments, 34(2), 219-222.
Oliver, K. M., Campos, J., Moran, N. A., & Hunter, M. S. (2008). Population dynamics of defensive symbionts in aphids. Proceedings of the Royal Society B: Biological Sciences, 275(1632), 293. https://doi.org/10.1098/rspb.2007.1192
Oliver, K. M., & Higashi, C. H. (2019). Variations on a protective theme: Hamiltonella defensa infections in aphids variably impact parasitoid success. Current Opinion in Insect Science, 32, 1-7. https://doi.org/10.1016/j.cois.2018.08.009
Oliver, K. M., Moran, N. A., & Hunter, M. S. (2006). Costs and benefits of a superinfection of facultative symbionts in aphids. Proceedings of the Royal Society B: Biological Sciences, 273(1591), 1273-1280.
Oliver, K. M., Smith, A. H., & Russell, J. A. (2014). Defensive symbiosis in the real world - advancing ecological studies of heritable, protective bacteria in aphids and beyond. Functional Ecology, 28(2), 341-355. https://doi.org/10.1111/1365-2435.12133.
Quintana, D., & Tiebel, J. (2019). An R script and excel file to calculate statistical power for your meta-analysis. https://doi.org/10.17605/OSF.IO/5C7UZ
R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Retrieved from http://www.R-project.org.
Ridley, M. (1988). Mating frequency and fecundity in insects. Biological Reviews, 63(4), 509-549. https://doi.org/10.1111/j.1469-185X.1988.tb00669.x
Rock, D. I., Smith, A. H., Joffe, J., Albertus, A., Wong, N., O'Connor, M., & Russell, J. A. (2018). Context-dependent vertical transmission shapes strong endosymbiont community structure in the pea aphid. Acyrthosiphon Pisum. Molecular Ecology, 27(8), 2039-2056. https://doi.org/10.1111/mec.14449.
Rouchet, R., & Vorburger, C. (2012). Strong specificity in the interaction between parasitoids and symbiont-protected hosts. Journal of Evolutionary Biology, 25(11), 2369-2375. https://doi.org/10.1111/j.1420-9101.2012.02608.x.
RStudio Team (2020). RStudio: Integrated Development for R. RStudio Inc. Retrieved from http://www.rstudio.com/.
Russell, J. A., & Moran, N. A. (2006). Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proceedings of the Royal Society B: Biological Sciences, 273(1586), 603-610.
Sanchez-Arcos, C., Reichelt, M., Gershenzon, J., & Kunert, G. (2016). Modulation of legume defense signaling pathways by native and non-native pea aphid clones. Frontiers Plant Science, 7(1), 1872. https://doi.org/10.3389/fpls.2016.01872
Santos-Garcia, D., Mestre-Rincon, N., Zchori-Fein, E., & Morin, S. (2020). Inside out: microbiota dynamics during host-plant adaptation of whiteflies. ISME Journal, 14(3), 847-856.
Scarborough, C. L., Ferrari, J., & Godfray, H. (2005). Aphid protected from pathogen by endosymbiont. Science, 310(5755), 1781. https://doi.org/10.1126/science.1120180
Shentu, X., Wang, X., Xiao, Y., & Yu, X. (2019). Effects of fungicide propiconazole on the yeast-like symbiotes in brown planthopper (BPH, Nilaparvata lugens Stål) and its role in controlling BPH infestation. Frontiers in Physiology, 10, 89. https://doi.org/10.3389/fphys.2019.00089
Simon, J. C., Sakurai, M., Bonhomme, J., Suchida, T., Koga, R., & Fukatsu, T. (2007). Elimination of a specialised facultative symbiont does not affect the reproductive mode of its aphid host. Ecological Entomology, 32(3), 296-301. https://doi.org/10.1111/j.1365-2311.2007.00868.x.
Smith, A. H., Łukasik, P., O'Connor, M. P., Lee, A., Mayo, G., Drott, M. T., Doll, S., Tuttle, R., Disciullo, R. A., Messina, A., Oliver, K. M., & Russell, J. A. (2015). Patterns, causes and consequences of defensive microbiome dynamics across multiple scales. Molecular Ecology, 24(5), 1135-1149. https://doi.org/10.1111/mec.13095.
Sochard, C., Leclair, M., Simon, J. C., & Outreman, Y. (2019). Host plant effects on the outcomes of defensive symbioses in the pea aphid complex. Evolutionary Ecology, 33(5), 651-669. https://doi.org/10.1007/s10682-019-10005-4.
Su, Q. I., Pan, H., Liu, B., Chu, D., Xie, W., Wu, Q., Wang, S., Xu, B., & Zhang, Y. (2013). Insect symbiont facilitates vector acquisition, retention, and transmission of plant virus. Scientific Reports, 3, 1367. https://doi.org/10.1038/srep01367
Sugio, A., Dubreuil, G., Giron, D., & Simon, J.-C. (2015). Plant-insect interactions under bacterial influence: ecological implications and underlying mechanisms. Journal of Experimental Botany, 66(2), 467-478. https://doi.org/10.1093/jxb/eru435.
Tian, P.-P., Chang, C.-Y., Miao, N.-H., Li, M.-Y., & Liu, X.-D. (2019). Infections with Arsenophonus facultative endosymbionts alter performance of aphids (Aphis gossypii) on an amino-acid-deficient diet. Applied and Environmental Microbiology, 85(23), e01407-e01419.
Tsuchida, T., Koga, R., Sakurai, M., & Fukatsu, T. (2006). Facultative bacterial endosymbionts of three aphid species, Aphis craccivora, Megoura crassicauda and Acyrthosiphon pisum, sympatrically found on the same host plants. Applied Entomology and Zoology, 41(1), 129-137. https://doi.org/10.1303/aez.2006.129.
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36, 1-48.
Vorburger, C. (2018). Symbiont-conferred resistance to parasitoids in aphids - Challenges for biological control. Biological Control, 116, 17-26. https://doi.org/10.1016/j.biocontrol.2017.02.004
Vorburger, C., Ganesanandamoorthy, P., & Kwiatkowski, M. (2013). Comparing constitutive and induced costs of symbiont-conferred resistance to parasitoids in aphids. Ecology and Evolution, 3(3), 706-713. https://doi.org/10.1002/ece3.491.
Vorburger, C., & Gouskov, A. (2011). Only helpful when required: a longevity cost of harbouring defensive symbionts. Journal of Evolutionary Biology, 24(7), 1611-1617. https://doi.org/10.1111/j.1420-9101.2011.02292.x.
Wang, Q., Yuan, E., Ling, X., Zhu-Salzman, K., Guo, H., Ge, F., & Sun, Y. (2020). An aphid facultative symbiont suppresses plant defence by manipulating aphid gene expression in salivary glands. Plant, Cell & Environment, 43(9), 2311-2322. https://doi.org/10.1111/pce.13836
Wang, Y.-B., Ren, F.-R., Yao, Y.-L., Sun, X., Walling, L. L., Li, N.-N., Bai, B., Bao, X.-Y., Xu, X.-R., & Luan, J.-B. (2020). Intracellular symbionts drive sex ratio in the whitefly by facilitating fertilization and provisioning of B vitamins. ISME Journal, 14(12), 2923-2935. https://doi.org/10.1111/pce.13836
Yoshida, K., Sanada-Morimura, S., Huang, S. H., & Tokuda, M. (2019). Influences of two coexisting endosymbionts, CI-inducing Wolbachia and male-killing Spiroplasma, on the performance of their host Laodelphax striatellus (Hemiptera: Delphacidae). Ecology and Evolution, 9(14), 8214-8224.
Zchori-Fein, E., Lahav, T., & Freilich, S. (2014). Variations in the identity and complexity of endosymbiont combinations in whitefly hosts. Frontiers in Microbiolgoy, 5, 310. https://doi.org/10.3389/fmicb.2014.00310.
Zytynska, S. E., Meyer, S. T., Sturm, S., Ullmann, W., Mehrparvar, M., & Weisser, W. W. (2016). Secondary bacterial symbiont community in aphids responds to plant diversity. Oecologia, 180(3), 735-747. https://doi.org/10.1007/s00442-015-3488-y.
Zytynska, S. E., Tighiouart, K., & Frago, E. (2021). The benefits and costs of hosting facultative symbionts in plant-sucking insects: a meta-analysis. Dryad Dataset, https://doi.org/10.5061/dryad.7h44j0zt5.
Zytynska, S. E., & Weisser, W. W. (2016). The natural occurrence of secondary bacterial symbionts in aphids. Ecological Entomology, 41(1), 13-26. https://doi.org/10.1111/een.12281.