The role of opioids in cancer response to immunotherapy.

Early progression Immunotherapy Opioid receptors Opioids Predictive factor Prognostic factor

Journal

Journal of translational medicine
ISSN: 1479-5876
Titre abrégé: J Transl Med
Pays: England
ID NLM: 101190741

Informations de publication

Date de publication:
23 03 2021
Historique:
received: 27 01 2021
accepted: 11 03 2021
entrez: 24 3 2021
pubmed: 25 3 2021
medline: 15 5 2021
Statut: epublish

Résumé

The response to immunotherapy can be impaired by several factors including external intervention such as drug interactions with immune system. We aimed to examine the immunomodulatory action of opioids, since immune cells express opioid receptors able to negatively influence their activities. This observational, multicenter, retrospective study, recruited patients with different metastatic solid tumors, who have received immunotherapy between September 2014 and September 2019. Immunotherapy was administered according to the standard schedule approved for each primary tumor and line of treatment. The concomitant intake of antibiotics, antifungals, corticosteroids and opioids were evaluated in all included patients. The relationship between tumor response to immunotherapy and the oncological outcomes were evaluated. A multivariate Cox-proportional hazard model was used to identify independent prognostic factors for survival. One hundred ninety-three patients were recruited. Overall, progression-free survival (PFS) and overall survival (OS) were significantly shorter in those patients taking opioids than in those who didn't (median PFS, 3 months vs. 19 months, HR 1.70, 95% CI 1.37-2.09, p < 0.0001; median OS, 4 months vs. 35 months, HR 1.60, 95% CI 1.26-2.02, p < 0.0001). In addition, PFS and OS were significantly impaired in those patients taking corticosteroids, antibiotics or antifungals, in those patients with an ECOG PS ≥ 1 and in patients with a high tumor burden. Using the multivariate analyses, opioids and ECOG PS were independent prognostic factors for PFS, whereas only ECOG PS resulted to be an independent prognostic factor for OS, with trend toward significance for opioids as well as tumor burden. Our study suggests that the concomitant administration of drugs as well as some clinical features could negatively predict the outcomes of cancer patients receiving immunotherapy. In particular, opioids use during immunotherapy is associated with early progression, potentially representing a predictive factor for PFS and negatively influencing OS as well. A possible negative drug interaction able to impair the immune response to anti-PD-1/PD-L1 agents has been highlighted. Our findings suggest the need to further explore the impact of opioids on immune system modulation and their role in restoring the response to immunotherapy treatment, thereby improving patients' outcomes.

Sections du résumé

BACKGROUND
The response to immunotherapy can be impaired by several factors including external intervention such as drug interactions with immune system. We aimed to examine the immunomodulatory action of opioids, since immune cells express opioid receptors able to negatively influence their activities.
METHODS
This observational, multicenter, retrospective study, recruited patients with different metastatic solid tumors, who have received immunotherapy between September 2014 and September 2019. Immunotherapy was administered according to the standard schedule approved for each primary tumor and line of treatment. The concomitant intake of antibiotics, antifungals, corticosteroids and opioids were evaluated in all included patients. The relationship between tumor response to immunotherapy and the oncological outcomes were evaluated. A multivariate Cox-proportional hazard model was used to identify independent prognostic factors for survival.
RESULTS
One hundred ninety-three patients were recruited. Overall, progression-free survival (PFS) and overall survival (OS) were significantly shorter in those patients taking opioids than in those who didn't (median PFS, 3 months vs. 19 months, HR 1.70, 95% CI 1.37-2.09, p < 0.0001; median OS, 4 months vs. 35 months, HR 1.60, 95% CI 1.26-2.02, p < 0.0001). In addition, PFS and OS were significantly impaired in those patients taking corticosteroids, antibiotics or antifungals, in those patients with an ECOG PS ≥ 1 and in patients with a high tumor burden. Using the multivariate analyses, opioids and ECOG PS were independent prognostic factors for PFS, whereas only ECOG PS resulted to be an independent prognostic factor for OS, with trend toward significance for opioids as well as tumor burden.
DISCUSSION
Our study suggests that the concomitant administration of drugs as well as some clinical features could negatively predict the outcomes of cancer patients receiving immunotherapy. In particular, opioids use during immunotherapy is associated with early progression, potentially representing a predictive factor for PFS and negatively influencing OS as well.
CONCLUSIONS
A possible negative drug interaction able to impair the immune response to anti-PD-1/PD-L1 agents has been highlighted. Our findings suggest the need to further explore the impact of opioids on immune system modulation and their role in restoring the response to immunotherapy treatment, thereby improving patients' outcomes.

Identifiants

pubmed: 33757546
doi: 10.1186/s12967-021-02784-8
pii: 10.1186/s12967-021-02784-8
pmc: PMC7988927
doi:

Substances chimiques

Analgesics, Opioid 0

Types de publication

Journal Article Multicenter Study Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

119

Commentaires et corrections

Type : CommentIn

Références

Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56–61.
doi: 10.1126/science.aaa8172
O’Sullivan T, Saddawi-Konefka R, Vermi W, Koebel CM, Arthur C, White JM, et al. Cancer immunoediting by the innate immune system in the absence of adaptive immunity. J Exp Med. 2012;209(10):1869–82. https://doi.org/10.1084/jem.20112738 (Epub 2012 Aug 27. PMID: 22927549; PMCID: PMC3457735).
doi: 10.1084/jem.20112738 pubmed: 22927549 pmcid: 3457735
Mandai M, Hamanishi J, Abiko K, Matsumura N, Baba T, Konishi I. Dual faces of IFNγ in cancer progression: a role of PD-L1 induction in the determination of pro- and antitumor immunity. Clin Cancer Res. 2016;22(10):2329–34.
doi: 10.1158/1078-0432.CCR-16-0224
Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, et al. Pooled analysis of long-term survival data from phase II and phase III trials of Ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33(17):1889–94.
doi: 10.1200/JCO.2014.56.2736
Ascierto PA, Long GV, Robert C, Brady B, Dutriaux C, Di Giacomo AM, et al. Survival outcomes in patients with previously untreated braf wild-type advanced melanoma treated with nivolumab therapy: three-year follow-up of a randomized phase 3 trial. JAMA Oncol. 2019;5(2):187–94.
doi: 10.1001/jamaoncol.2018.4514
Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381(16):1535–46.
doi: 10.1056/NEJMoa1910836
Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 Tumor Proportion Score of 50% or greater. J Clin Oncol. 2019;37(7):537–46.
doi: 10.1200/JCO.18.00149
Gadgeel S, Rodríguez-Abreu D, Speranza G, Esteban E, Felip E, Dómine M, et al. Updated analysis from KEYNOTE-189: pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic nonsquamous non-small-cell lung cancer. J Clin Oncol. 2020;38(14):1505–17.
doi: 10.1200/JCO.19.03136
West H, McCleod M, Hussein M, Morabito A, Rittmeyer A, Conter HJ, et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20(7):924–37. https://doi.org/10.1016/S1470-2045(19)30167-6 (Epub 2019 May 20 PMID: 31122901).
doi: 10.1016/S1470-2045(19)30167-6 pubmed: 31122901
Herbst RS, Garon EB, Kim DW, Cho BC, Perez-Gracia JL, Han JY, et al. Long-term outcomes and retreatment among patients with previously treated, programmed death-ligand 1-positive, advanced non-small-cell lung cancer in the KEYNOTE-010 Study. J Clin Oncol. 2020;38(14):1580–90. https://doi.org/10.1200/JCO.19.02446 (Epub 2020 Feb 20 PMID: 32078391).
doi: 10.1200/JCO.19.02446 pubmed: 32078391
Powles T, Plimack ER, Soulières D, Waddell T, Stus V, Gafanov R, et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): extended follow-up from a randomized, open-label, phase 3 trial. Lancet Oncol. 2020;21(12):1563–73. https://doi.org/10.1016/S1470-2045(20)30436-8 (Epub 2020 Oct 23. Erratum in: Lancet Oncol. 2020 Dec;21(12):e553. PMID: 33284113).
doi: 10.1016/S1470-2045(20)30436-8 pubmed: 33284113
Motzer RJ, Escudier B, George S, Hammers HJ, Srinivas S, Tykodi SS, et al. Nivolumab versus everolimus in patients with advanced renal cell carcinoma: Updated results with long-term follow-up of the randomized, open-label, phase 3 CheckMate 025 trial. Cancer. 2020;126(18):4156–67. https://doi.org/10.1002/cncr.33033 (Epub 2020 Jul 16 PMID: 32673417).
doi: 10.1002/cncr.33033 pubmed: 32673417
D’Angelo SP, Russell J, Lebbé C, Chmielowski B, Gambichler T, Grob JJ, et al. Efficacy and safety of first-line avelumab treatment in patients with stage IV metastatic merkel cell carcinoma: a preplanned interim analysis of a clinical trial. JAMA Oncol. 2018;4(9):e180077. https://doi.org/10.1001/jamaoncol.2018.0077 (Epub 2018 Sep 13. PMID: 29566106; PMCID: PMC5885245).
doi: 10.1001/jamaoncol.2018.0077 pubmed: 29566106 pmcid: 5885245
André T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med. 2020;383(23):2207–18. https://doi.org/10.1056/NEJMoa2017699 (PMID: 33264544).
doi: 10.1056/NEJMoa2017699 pubmed: 33264544
O’Donnell JS, Long GV, Scolyer RA, Teng MW, Smyth MJ. Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat Rev. 2017;52:71–81. https://doi.org/10.1016/j.ctrv.2016.11.007 (Epub 2016 Nov 27 PMID: 27951441).
doi: 10.1016/j.ctrv.2016.11.007 pubmed: 27951441
Frigola J, Navarro A, Carbonell C, Callejo A, Iranzo P, Cedrés S, et al. Molecular profiling of long-term responders to immune checkpoint inhibitors in advanced non-small cell lung cancer. Mol Oncol. 2020. https://doi.org/10.1002/1878-0261.12891 (Epub ahead of print. PMID: 33342055).
doi: 10.1002/1878-0261.12891
Hu-Lieskovan S, Lisberg A, Zaretsky JM, Grogan TR, Rizvi H, Wells DK, et al. Tumor characteristics associated with benefit from pembrolizumab in advanced non-small cell lung cancer. Clin Cancer Res. 2019;25(16):5061–8. https://doi.org/10.1158/1078-0432.CCR-18-4275 (Epub 2019 May 21. PMID: 31113840; PMCID: PMC6901027).
doi: 10.1158/1078-0432.CCR-18-4275 pubmed: 31113840 pmcid: 6901027
Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015;350(6257):207–11. https://doi.org/10.1126/science.aad0095 (PMID: 26359337; PMCID: PMC5054517).
doi: 10.1126/science.aad0095 pubmed: 26359337 pmcid: 5054517
Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8. https://doi.org/10.1126/science.aaa1348 (Epub 2015 Mar 12. PMID: 25765070; PMCID: PMC4993154).
doi: 10.1126/science.aaa1348 pubmed: 25765070 pmcid: 4993154
Hellmann MD, Nathanson T, Rizvi H, Creelan BC, Sanchez-Vega F, Ahuja A, et al. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell. 2018;33(5):843-852.e4. https://doi.org/10.1016/j.ccell.2018.03.018 .
doi: 10.1016/j.ccell.2018.03.018 pubmed: 29657128 pmcid: 5953836
Fumet JD, Truntzer C, Yarchoan M, Ghiringhelli F. Tumour mutational burden as a biomarker for immunotherapy: Current data and emerging concepts. Eur J Cancer. 2020;131:40–50. https://doi.org/10.1016/j.ejca.2020.02.038 (Epub 2020 Apr 9 PMID: 32278982).
doi: 10.1016/j.ejca.2020.02.038 pubmed: 32278982
Botticelli A, Mezi S, Pomati G, Cerbelli B, Cerbelli E, Roberto M, et al. Tryptophan catabolism as immune mechanism of primary resistance to anti-PD-1. Front Immunol. 2020;7(11):1243. https://doi.org/10.3389/fimmu.2020.01243 (PMID:32733441;PMCID:PMC7358280).
doi: 10.3389/fimmu.2020.01243
Botticelli A, Cirillo A, Scagnoli S, Cerbelli B, Strigari L, Cortellini A, et al. The agnostic role of site of metastasis in predicting outcomes in cancer patients treated with immunotherapy. Vaccines (Basel). 2020;8(2):203. https://doi.org/10.3390/vaccines8020203.PMID:32353934;PMCID:PMC7349154 .
doi: 10.3390/vaccines8020203.PMID:32353934;PMCID:PMC7349154
Bilen MA, Shabto JM, Martini DJ, Liu Y, Lewis C, Collins H, et al. Sites of metastasis and association with clinical outcome in advanced stage cancer patients treated with immunotherapy. BMC Cancer. 2019;19(1):857. https://doi.org/10.1186/s12885-019-6073-7.PMID:31464611;PMCID:PMC6716879 .
doi: 10.1186/s12885-019-6073-7.PMID:31464611;PMCID:PMC6716879 pubmed: 31464611 pmcid: 6716879
Yang F, Markovic SN, Molina JR, Halfdanarson TR, Pagliaro LC, Chintakuntlawar AV, et al. Association of sex, age, and eastern cooperative oncology group performance status with survival benefit of cancer immunotherapy in randomized clinical trials: a systematic review and meta-analysis. JAMA Netw Open. 2020;3(8):e2012534. https://doi.org/10.1001/jamanetworkopen.2020.12534 (PMID:32766800;PMCID:PMC7414387).
doi: 10.1001/jamanetworkopen.2020.12534 pubmed: 32766800 pmcid: 7414387
Pluvy J, Brosseau S, Naltet C, Opsomer MA, Cazes A, Danel C, Khalil A, et al. Lazarus syndrome in nonsmall cell lung cancer patients with poor performance status and major leukocytosis following nivolumab treatment. Eur Respir J. 2017;50(1):1700310. https://doi.org/10.1183/13993003.00310-2017 (PMID: 28751414).
doi: 10.1183/13993003.00310-2017 pubmed: 28751414
Ramakrishnan R, Gabrilovich DI. Mechanism of synergistic effect of chemotherapy and immunotherapy of cancer. Cancer Immunol Immunother. 2011;60(3):419–23. https://doi.org/10.1007/s00262-010-0930-1 (Epub 2010 Oct 26 PMID: 20976448).
doi: 10.1007/s00262-010-0930-1 pubmed: 20976448
Green DR, Ferguson T, Zitvogel L, Kroemer G. Immunogenic and tolerogenic cell death. Nat Rev Immunol. 2009;9(5):353–63. https://doi.org/10.1038/nri2545.PMID:19365408;PMCID:PMC2818721 .
doi: 10.1038/nri2545.PMID:19365408;PMCID:PMC2818721 pubmed: 19365408 pmcid: 2818721
Shurin GV, Tourkova IL, Kaneno R, Shurin MR. Chemotherapeutic agents in noncytotoxic concentrations increase antigen presentation by dendritic cells via an IL-12-dependent mechanism. J Immunol. 2009;183(1):137–44. https://doi.org/10.4049/jimmunol.0900734 (Epub 2009 Jun 17. PMID: 19535620; PMCID: PMC4005417).
doi: 10.4049/jimmunol.0900734 pubmed: 19535620
Botticelli A, Mezi S, Pomati G, Sciattella P, Cerbelli B, Roberto M, et al. The impact of locoregional treatment on response to nivolumab in advanced platinum refractory head and neck cancer: the need trial. Vaccines (Basel). 2020;8(2):191. https://doi.org/10.3390/vaccines8020191.PMID:32326034;PMCID:PMC7349768 .
doi: 10.3390/vaccines8020191.PMID:32326034;PMCID:PMC7349768
Zeng X, Zhu S, Xu C, Wang Z, Su X, Zeng D, et al. Effect of comorbidity on outcomes of patients with advanced non-small cell lung cancer undergoing anti-PD1 immunotherapy. Med Sci Monit. 2020;7(26):e922576. https://doi.org/10.12659/MSM.922576 (PMID:32893263;PMCID:PMC7496511).
doi: 10.12659/MSM.922576
Nagai H, Muto M. Optimal management of immune-related adverse events resulting from treatment with immune checkpoint inhibitors: a review and update. Int J Clin Oncol. 2018;23(3):410–20. https://doi.org/10.1007/s10147-018-1259-6 (Epub 2018 Mar 7 PMID: 29516216).
doi: 10.1007/s10147-018-1259-6 pubmed: 29516216
Weber JS, Kähler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol. 2012;30(21):2691–7. https://doi.org/10.1200/JCO.2012.41.6750 (Epub 2012 May 21 PMID: 22614989).
doi: 10.1200/JCO.2012.41.6750 pubmed: 22614989
Buti S, Bersanelli M, Perrone F, Tiseo M, Tucci M, Adamo V, et al. Effect of concomitant medications with immune-modulatory properties on the outcomes of patients with advanced cancer treated with immune checkpoint inhibitors: development and validation of a novel prognostic index. Eur J Cancer. 2021;142:18–28. https://doi.org/10.1016/j.ejca.2020.09.033 (Epub 2020 Nov 16 PMID: 33212418).
doi: 10.1016/j.ejca.2020.09.033 pubmed: 33212418
Pieniążek M, Pawlak P, Radecka B. Early palliative care of non-small cell lung cancer in the context of immunotherapy. Oncol Lett. 2020;20(6):396. https://doi.org/10.3892/ol.2020.12259 .
doi: 10.3892/ol.2020.12259 pubmed: 33193856 pmcid: 7656105
Colle R, Radzik A, Cohen R, Pellat A, Lopez-Tabada D, Cachanado M, et al. Pseudoprogression in patients treated with immune checkpoint inhibitors for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer. Eur J Cancer. 2021;144:9–16. https://doi.org/10.1016/j.ejca.2020.11.009 (Epub 2020 Dec 11 PMID: 33316636).
doi: 10.1016/j.ejca.2020.11.009 pubmed: 33316636
Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, et al. RECIST working group. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18(3):e143-e152. Doi: https://doi.org/10.1016/S1470-2045(17)30074-8 .
Myers G. Immune-related adverse events of immune checkpoint inhibitors: a brief review. Curr Oncol. 2018;25(5):342–7. https://doi.org/10.3747/co.25.4235 (Epub 2018 Oct 31. PMID: 30464684; PMCID: PMC6209551).
doi: 10.3747/co.25.4235 pubmed: 30464684 pmcid: 6209551
Cortellini A, Tucci M, Adamo V, Stucci LS, Russo A, Tanda ET. Integrated analysis of concomitant medications and oncological outcomes from PD-1/PD-L1 checkpoint inhibitors in clinical practice. J Immunother Cancer. 2020;8(2):e001361. https://doi.org/10.1136/jitc-2020-001361 (PMID:33154150;PMCID:PMC7646355).
doi: 10.1136/jitc-2020-001361 pubmed: 33154150 pmcid: 7646355
Tong W, Li X. Evidence for mu opioid receptor on mouse spleen lymphocyteds. Acta Pharmacologica Sinica [online]. 1999;20(9):835–8.
Machelska H, Celik MÖ. Opioid receptors in immune and glial cells-implications for pain control. Front Immunol. 2020;4(11):300. https://doi.org/10.3389/fimmu.2020.00300.PMID:32194554;PMCID:PMC7064637 .
doi: 10.3389/fimmu.2020.00300.PMID:32194554;PMCID:PMC7064637
Okuyama K, Ide S, Sakurada S, Sasaki K, Sora I, Tamura G, et al. μ-opioid receptor-mediated alterations of allergen-induced immune responses of bronchial lymph node cells in a murine model of stress asthma. Allergol Int. 2012;61(2):245–58. https://doi.org/10.2332/allergolint.11-OA-0304 (Epub 2011 Dec 25 PMID: 22189590).
doi: 10.2332/allergolint.11-OA-0304 pubmed: 22189590
Börner C, Lanciotti S, Koch T, Höllt V, Kraus J. μ opioid receptor agonist-selective regulation of interleukin-4 in T lymphocytes. J Neuroimmunol. 2013;263(1–2):35–42. https://doi.org/10.1016/j.jneuroim.2013.07.012 (Epub 2013 Jul 25 PMID: 23965172).
doi: 10.1016/j.jneuroim.2013.07.012 pubmed: 23965172
Toskulkao T, Pornchai R, Akkarapatumwong V, Vatanatunyakum S, Govitrapong P. Alteration of lymphocyte opioid receptors in methadone maintenance subjects. Neurochem Int. 2010;56(2):285–90. https://doi.org/10.1016/j.neuint.2009.10.013 (Epub 2009 Nov 12 PMID: 19913582).
doi: 10.1016/j.neuint.2009.10.013 pubmed: 19913582
Maher DP, Walia D, Heller NM. Suppression of human natural killer cells by different classes of opioids. Anesth Analg. 2019;128(5):1013–21. https://doi.org/10.1213/ANE.0000000000004058 (PMID:30801358;PMCID:PMC6726115).
doi: 10.1213/ANE.0000000000004058 pubmed: 30801358 pmcid: 6726115
Maher DP, Walia D, Heller NM. Morphine decreases the function of primary human natural killer cells by both TLR4 and opioid receptor signaling. Brain Behav Immun. 2020;83:298–302. https://doi.org/10.1016/j.bbi.2019.10.011 (Epub 2019 Oct 15 PMID: 31626971).
doi: 10.1016/j.bbi.2019.10.011 pubmed: 31626971
Beilin B, Shavit Y, Hart J, Mordashov B, Cohn S, Notti I, Bessler H. Effects of anesthesia based on large versus small doses of fentanyl on natural killer cell cytotoxicity in the perioperative period. Anesth Analg. 1996;82(3):492–7. https://doi.org/10.1097/00000539-199603000-00011 (PMID: 8623949).
doi: 10.1097/00000539-199603000-00011 pubmed: 8623949
Kadhim S, Bird MF, Lambert DG. N/OFQ-NOP system in peripheral and central immunomodulation. Handb Exp Pharmacol. 2019;254:297–311. https://doi.org/10.1007/164_2018_203 (PMID: 30771012).
doi: 10.1007/164_2018_203 pubmed: 30771012
Acharya C, Betrapally NS, Gillevet PM, Sterling RK, Akbarali H, White MB, et al. Chronic opioid use is associated with altered gut microbiota and predicts readmissions in patients with cirrhosis. Aliment Pharmacol Ther. 2017;45(2):319–31. https://doi.org/10.1111/apt.13858 (Epub 2016 Nov 20 PMID: 27868217).
doi: 10.1111/apt.13858 pubmed: 27868217
Banerjee S, Sindberg G, Wang F, Meng J, Sharma U, Zhang L, et al. Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation. Mucosal Immunol. 2016;9(6):1418–28. https://doi.org/10.1038/mi.2016.9.61 .
doi: 10.1038/mi.2016.9.61 pubmed: 26906406 pmcid: 4996771
Ren M, Lotfipour S. The role of the gut microbiome in opioid use. Behav Pharmacol. 2020;31:2. https://doi.org/10.1097/FBP.0000000000000538 .
doi: 10.1097/FBP.0000000000000538
Iglesias-Santamaría A. Impact of antibiotic use and other concomitant medications on the efficacy of immune checkpoint inhibitors in patients with advanced cancer. Clin Transl Oncol. 2020;22(9):1481–90. https://doi.org/10.1007/s12094-019-02282-w (Epub 2020 Jan 9 PMID: 31919759).
doi: 10.1007/s12094-019-02282-w pubmed: 31919759
Zheng XQ, Huang JF, Lin JL, Chen L, Zhou TT, Chen D, Lin DD, Shen JF, Wu AM. Incidence, prognostic factors, and a nomogram of lung cancer with bone metastasis at initial diagnosis: a population-based study. Transl Lung Cancer Res. 2019;8(4):367–79. https://doi.org/10.21037/tlcr.2019.08.16 (PMID:31555512;PMCID:PMC6749127).
doi: 10.21037/tlcr.2019.08.16 pubmed: 31555512 pmcid: 6749127
Abdel-Rahman O. Clinical correlates and prognostic value of different metastatic sites in patients with malignant melanoma of the skin: a SEER database analysis. J Dermatolog Treat. 2018;29(2):176–81. https://doi.org/10.1080/09546634.2017.1360987 (Epub 2017 Aug 11 PMID: 28745581).
doi: 10.1080/09546634.2017.1360987 pubmed: 28745581
Santoni M, Conti A, Procopio G, Porta C, Ibrahim T, Barni S, et al. Bone metastases in patients with metastatic renal cell carcinoma: are they always associated with poor prognosis? J Exp Clin Cancer Res. 2015;34(1):10. https://doi.org/10.1186/s13046-015-0122-0 (PMID: 25651794).
doi: 10.1186/s13046-015-0122-0 pubmed: 25651794 pmcid: 4328067

Auteurs

Andrea Botticelli (A)

Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185, Rome, Italy.

Alessio Cirillo (A)

Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy.

Giulia Pomati (G)

Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy. giulia.pomati@uniroma1.it.

Bruna Cerbelli (B)

Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy.

Simone Scagnoli (S)

Department of Medical and Surgical Sciences and Translational Medicine, University of Rome Sapienza, 00185, Rome, Italy.

Michela Roberto (M)

Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185, Rome, Italy.

Alain Gelibter (A)

Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy.

Giulia Mammone (G)

Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy.

Maria Letizia Calandrella (ML)

Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy.

Edoardo Cerbelli (E)

Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy.

Francesca Romana Di Pietro (FR)

Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy.

Federica De Galitiis (F)

Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy.

Gaetano Lanzetta (G)

Medical Oncology Unit, Italian Neuro-Traumatology Institute, 00046, Grottaferrata, Italy.

Enrico Cortesi (E)

Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy.

Silvia Mezi (S)

Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy.

Paolo Marchetti (P)

Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185, Rome, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH