Magnetically focused 70 MeV proton minibeams for preclinical experiments combining a tandem accelerator and a 3 GHz linear post-accelerator.

magnetic minibeam focusing pMBRT particle optics codes TRACE 3-D and TRAVEL preclinical irradiation facility proton minibeam radiotherapy tandem-linac accelerator combination

Journal

Medical physics
ISSN: 2473-4209
Titre abrégé: Med Phys
Pays: United States
ID NLM: 0425746

Informations de publication

Date de publication:
Jun 2021
Historique:
revised: 28 02 2021
received: 21 06 2020
accepted: 14 03 2021
pubmed: 25 3 2021
medline: 10 7 2021
entrez: 24 3 2021
Statut: ppublish

Résumé

Radiotherapy plays an important role for the treatment of tumor diseases in two-thirds of all cases, but it is limited by side effects in the surrounding healthy tissue. Proton minibeam radiotherapy (pMBRT) is a promising option to widen the therapeutic window for tumor control at reduced side effects. An accelerator concept based on an existing tandem Van de Graaff accelerator and a linac enables the focusing of 70 MeV protons to form minibeams with a size of only 0.1 mm for a preclinical small animal irradiation facility, while avoiding the cost of an RFQ injector. The tandem accelerator provides a 16 MeV proton beam with a beam brightness of A study about buncher amplitude and phase shift between buncher and linac is showing that 49% of all protons available from the tandem can be transported through the post-accelerator. A mean beam current up to 19 nA is expected within an area of (0.1 × 0.1) mm An extension of existing tandem accelerators by commercially available 3 GHz structures is able to deliver a proton minibeam that serves all requirements to obtain proton minibeams to perform preclinical minibeam irradiations as it would be the case for a complete commercial 3 GHz injector-RFQ-linac combination. Due to the modularity of the linac structure, the irradiation facility can be extended to clinically relevant proton energies up to or above 200 MeV.

Identifiants

pubmed: 33759211
doi: 10.1002/mp.14854
doi:

Substances chimiques

Protons 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2733-2749

Informations de copyright

© 2021 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.

Références

Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA: A Cancer Journal for Clinicians. 2006;56:106-130.
Kauffmann G, Sauer R, Weber W, Dangl S. Radiologie: Bildgebende Verfahren, Strahlentherapie, Nuklearmedizin und Strahlenschutz. Elsevier Health Sciences; 2013.
Bragg WH, Kleeman R. XXXIX. On the α particles of radium, and their loss of range in passing through various atoms and molecules. London, Edinburgh, and Dublin Phil Magaz J Sci. 1905;10:318-340.
Paganetti H, Bortfeld T, Kooy H. Proton beam radiotherapy: the state of the art. Med Phys. 2005;32:2048-2049.
Zlobinskaya O, Girst S, Greubel C, et al. Reduced side effects by proton microchannel radiotherapy: study in a human skin model. Radiat Environ Biophys. 2013;52:123-133.
Prezado Y, Fois GR. Proton-minibeam radiation therapy: a proof of concept. Med Phys. 2013;40:31712.
Sammer et al. Submitted. Scientific reports. 2020.
Sammer M, Greubel C, Girst S, Dollinger G. Optimization of beam arrangements in proton minibeam radiotherapy by cell survival simulations. Med Phys. 2017;44:6096-6104.
Girst S, Greubel C, Reindl J, et al. Proton minibeam radiation therapy reduces side effects in an in vivo mouse ear model. Int J Radiat Oncol Biol Phys. 2016;95:234-241.
Prezado Y, Jouvion G, Hardy D, et al. Proton minibeam radiation therapy spares normal rat brain: long-term clinical, radiological and histopathological analysis. Sci Rep. 2017;7:14403.
Sammer M, Zahnbrecher E, Dobiasch S, et al. Proton pencil minibeam irradiation of an in-vivo mouse ear model spares healthy tissue dependent on beam size. PLoS One. 2019;14:e0224873.
Sammer M, Teiluf K, Girst S, et al. Beam size limit for pencil minibeam radiotherapy determined from side effects in an in-vivo mouse ear model. PLoS One. 2019;14:e0221454.
Datzmann G, Sammer M, Girst S, Mayerhofer M, Dollinger G, Reindl J. Preclinical challenges in proton minibeam radiotherapy: physics and biomedical aspects. Front Phys. 2020;8:4-6.
Schneider T, de Marzi L, Patriarca A, Prezado Y. Advancing proton minibeam radiation therapy: magnetically focussed proton minibeams at a clinical centre. Sci Rep. 2020;10:1-10.
Perl J, Shin J, Schümann J, Faddegon B, Paganetti H. TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med Phys. 2012;39:6818-6837.
ICRU. Prescribing, recording and reporting photon beam therapy. ICRU report 50. 1993;50:5-7.
ICRU. Prescribing, recording and reporting photon beam therapy (supplement to ICRU Report 50). ICRU report. 1999;62:60-62.
Prezado Y, Deman P, Varlet P, et al. Tolerance to dose escalation in minibeam radiation therapy applied to normal rat brain: long-term clinical, radiological and histopathological analysis. Radiat Res. 2015;184:314-321.
Prezado Y, Sarun S, Gil S, Deman P, Bouchet A, Le Duc G. Increase of lifespan for glioma-bearing rats by using minibeam radiation therapy. J Synchrotron Radiat. 2012;19:60-65.
Degiovanni A, Stabile P, Ungaro D. LIGHT: a linear accelerator for proton therapy. Proceedings of NAPAC2016, Chicago, USA. 2016.
Degiovanni A, Adam J, Aguilera Murciano D, et al. Status of the Commissioning of the LIGHT Prototype. In: 9th Int. Particle Accelerator Conf.(IPAC’18), Vancouver, BC, Canada, April 29-May 4, 2018; 2018:425-428.
Picardi L, Ronsivalle C, Vignati A. PROGETTO DI Acceleratore COMPATTO PER TERAPIA ONCOLOGICA CON PROTONI (TOP).
Ronsivalle C, Picardi L, Ampollini A, et al. First acceleration of a proton beam in a side coupled drift tube linac. EPL (Europhysics Letters). 2015;111:14002.
Ziegler JF, Ziegler MD, Biersack JP. SRIM-The stopping and range of ions in matter (2010). Nucl Instrum Methods Phys Res B. 2010;268:1818-1823.
Assmann W, De Boer J, Meyer-Berkhout U, et al. The munich mp tandem. Nucl Instrum Methods. 1974;122:191-203.
Berti R. Conditions for installing a RF linac as a post accelerator for preclinical studies using proton minibeams. Università di Pisa, Universität der Bundeswehr München; 2019.
Ronsivalle C, Carpanese M, Marino C, et al. The top-implart project. Eur Phys J Plus. 2011;126:68.
Alvarez LW, Bradner H, Franck JV, et al. Berkeley proton linear accelerator. Rev Sci Instrum. 1955;26:111-133.
D’Auria G, Borsi P, Carniel A, et al. Installation and commissioning of the 100 MeV preinjector Linac of the New Elettra Injector. In: Proc. of this conference; 2008.
Picardi L, Ronsivalle C. Progress in the Development of the TOP Linac; 2004.
Mayerhofer M, Bergmaier A, Datzmann D, et al. Concept and performance evaluation of two 3 GHz buncherunits optimizing the dose rate of a novel preclinical protonminibeam irradiation facilitye. Currently under review at PLOSONE; 2021.
Crandall KR. Trace 3-D Documentation; 1987.
Perrin A, Amand J-F, Mütze T, Lallement J-B, Lanzone S. TRAVEL v4.07. User Manuel; 2007.
Großer J. Einführung in die Teilchenoptik. Berlin: Springer-Verlag; 2013.
Besserer J, de Boer J, Dellert M, et al. An irradiation facility with a vertical beam for radiobiological studies. Nucl Instrum Methods Phys Res, Sect A. 1999;430:154-160.
Eschbaumer S, Bergmaier A, Seiler D, Dollinger G. Time of flight assisted ΔE-E method for enhanced isotope separation capabilities in heavy ion elastic recoil detection analysis. Nucl Instrum Methods Phys Res B. 2017;406:10-14.
Peucelle C, Nauraye C, Patriarca A, et al. Proton minibeam radiation therapy: experimental dosimetry evaluation. Med Phys. 2015;42:7108-7113.
Guardiola C, Peucelle C, Prezado Y. Optimization of the mechanical collimation for minibeam generation in proton minibeam radiation therapy. Med Phys. 2017;44:1470-1478.
Wang P, Zheng J, Song Y, Zhang W. Design of the fast scanning magnets for SC200 proton therapy facility. IEEE Trans Appl Supercond. 2018;29:1-5.
Pavlovic M. Beam-optics study of the gantry beam delivery system for light-ion cancer therapy. Nucl Instrum Methods Phys Res, Sect A. 1997;399:439-454.
Dollinger G, Faestermann T. Physics at the Munich tandem accelerator laboratory. Nucl Phys News. 2018;28:5-12.
Hable V, Greubel C, Bergmaier A, et al. The live cell irradiation and observation setup at SNAKE. Nucl Instrum Methods Phys Res B. 2009;267:2090-2097.
Hauptner A, Dietzel S, Drexler GA, et al. Microirradiation of cells with energetic heavy ions. Radiat Environ Biophys. 2004;42:237-245.

Auteurs

Michael Mayerhofer (M)

Universität der Bundeswehr München, Neubiberg, Germany.

Gerd Datzmann (G)

Universität der Bundeswehr München, Neubiberg, Germany.

Alberto Degiovanni (A)

ADAM/AVO, Geneva, Switzerland.

Veliko Dimov (V)

ADAM/AVO, Geneva, Switzerland.

Günther Dollinger (G)

Universität der Bundeswehr München, Neubiberg, Germany.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH