REV-ERB in GABAergic neurons controls diurnal hepatic insulin sensitivity.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
04 2021
Historique:
received: 17 06 2020
accepted: 12 02 2021
pubmed: 26 3 2021
medline: 11 1 2022
entrez: 25 3 2021
Statut: ppublish

Résumé

Systemic insulin sensitivity shows a diurnal rhythm with a peak upon waking

Identifiants

pubmed: 33762728
doi: 10.1038/s41586-021-03358-w
pii: 10.1038/s41586-021-03358-w
pmc: PMC8085086
mid: NIHMS1673610
doi:

Substances chimiques

Blood Glucose 0
Nuclear Receptor Subfamily 1, Group D, Member 1 0
Glucose IY9XDZ35W2

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

763-767

Subventions

Organisme : NIH HHS
ID : S10 OD016167
Pays : United States
Organisme : NIA NIH HHS
ID : R03 AG070687
Pays : United States
Organisme : NICHD NIH HHS
ID : U54 HD083092
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK056338
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK111436
Pays : United States
Organisme : NIGMS NIH HHS
ID : P20 GM135002
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK114356
Pays : United States
Organisme : NIDDK NIH HHS
ID : R00 DK099443
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL153320
Pays : United States
Organisme : NCI NIH HHS
ID : R21 CA215591
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG069966
Pays : United States
Organisme : NCI NIH HHS
ID : P50 CA126752
Pays : United States
Organisme : NIEHS NIH HHS
ID : P30 ES030285
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA125123
Pays : United States
Organisme : NHGRI NIH HHS
ID : UM1 HG006348
Pays : United States
Organisme : NICHD NIH HHS
ID : P50 HD103555
Pays : United States
Organisme : NIEHS NIH HHS
ID : R01 ES027544
Pays : United States

Commentaires et corrections

Type : ErratumIn

Références

Shi, S. Q., Ansari, T. S., McGuinness, O. P., Wasserman, D. H. & Johnson, C. H. Circadian disruption leads to insulin resistance and obesity. Curr. Biol. 23, 372–381 (2013).
pubmed: 23434278 pmcid: 3595381 doi: 10.1016/j.cub.2013.01.048
Coomans, C. P. et al. Detrimental effects of constant light exposure and high-fat diet on circadian energy metabolism and insulin sensitivity. FASEB J. 27, 1721–1732 (2013).
pubmed: 23303208 doi: 10.1096/fj.12-210898
O’Neal, T. B. & Luther, E. E. Dawn phenomenon. https://www.statpearls.com/articlelibrary/viewarticle/20266/ (StatPearls Publishing, 2020).
Monnier, L., Colette, C., Dejager, S. & Owens, D. Magnitude of the dawn phenomenon and its impact on the overall glucose exposure in type 2 diabetes: is this of concern? Diabetes Care 36, 4057–4062 (2013).
pubmed: 24170753 pmcid: 3836163 doi: 10.2337/dc12-2127
Hastings, M. H., Maywood, E. S. & Brancaccio, M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat. Rev. Neurosci. 19, 453–469 (2018).
pubmed: 29934559 doi: 10.1038/s41583-018-0026-z
Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).
pubmed: 25349387 pmcid: 4234565 doi: 10.1073/pnas.1408886111
Cho, H. et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485, 123–127 (2012).
pubmed: 22460952 pmcid: 3367514 doi: 10.1038/nature11048
Zhang, Y. et al. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science 348, 1488–1492 (2015).
pubmed: 26044300 pmcid: 4613749 doi: 10.1126/science.aab3021
Doi, M. et al. Circadian regulation of intracellular G-protein signalling mediates intercellular synchrony and rhythmicity in the suprachiasmatic nucleus. Nat. Commun. 2, 327 (2011).
pubmed: 21610730 doi: 10.1038/ncomms1316
Tu, S. et al. Takusan: a large gene family that regulates synaptic activity. Neuron 55, 69–85 (2007).
pubmed: 17610818 pmcid: 2902460 doi: 10.1016/j.neuron.2007.06.021
Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307–320 (2002).
pubmed: 12015981 doi: 10.1016/S0092-8674(02)00722-5
Adelmant, G., Bègue, A., Stéhelin, D. & Laudet, V. A functional Rev-erbα responsive element located in the human Rev-erbα promoter mediates a repressing activity. Proc. Natl Acad. Sci. USA 93, 3553–3558 (1996).
pubmed: 8622974 pmcid: 39648 doi: 10.1073/pnas.93.8.3553
Carroll, M. F. & Schade, D. S. The dawn phenomenon revisited: implications for diabetes therapy. Endocr. Pract. 11, 55–64 (2005).
pubmed: 16033737 doi: 10.4158/EP.11.1.55
Porcellati, F., Lucidi, P., Bolli, G. B. & Fanelli, C. G. Thirty years of research on the dawn phenomenon: lessons to optimize blood glucose control in diabetes. Diabetes Care 36, 3860–3862 (2013).
pubmed: 24265365 pmcid: 3836156 doi: 10.2337/dc13-2088
Cuesta, M., Boudreau, P., Cermakian, N. & Boivin, D. B. Rapid resetting of human peripheral clocks by phototherapy during simulated night shift work. Sci. Rep. 7, 16310 (2017).
pubmed: 29176713 pmcid: 5701225 doi: 10.1038/s41598-017-16429-8
Akashi, M. et al. Noninvasive method for assessing the human circadian clock using hair follicle cells. Proc. Natl Acad. Sci. USA 107, 15643–15648 (2010).
pubmed: 20798039 pmcid: 2932591 doi: 10.1073/pnas.1003878107
la Fleur, S. E., Kalsbeek, A., Wortel, J., Fekkes, M. L. & Buijs, R. M. A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. Diabetes 50, 1237–1243 (2001).
pubmed: 11375322 doi: 10.2337/diabetes.50.6.1237
Coomans, C. P. et al. The suprachiasmatic nucleus controls circadian energy metabolism and hepatic insulin sensitivity. Diabetes 62, 1102–1108 (2013).
pubmed: 23274903 pmcid: 3609590 doi: 10.2337/db12-0507
Foppen, E., Tan, A. A., Ackermans, M. T., Fliers, E. & Kalsbeek, A. Suprachiasmatic nucleus neuropeptides and their control of endogenous glucose production. J. Neuroendocrinol. 28, https://doi.org/10.1111/jne.12365 (2016).
Kalsbeek, A., Yi, C.-X., La Fleur, S. E. & Fliers, E. The hypothalamic clock and its control of glucose homeostasis. Trends Endocrinol. Metab. 21, 402–410 (2010).
pubmed: 20303779 doi: 10.1016/j.tem.2010.02.005
Bolli, G. B. et al. Demonstration of a dawn phenomenon in normal human volunteers. Diabetes 33, 1150–1153 (1984).
pubmed: 6389230 doi: 10.2337/diab.33.12.1150
Van Cauter, E., Polonsky, K. S. & Scheen, A. J. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr. Rev. 18, 716–738 (1997).
pubmed: 9331550
Boden, G., Chen, X. & Urbain, J. L. Evidence for a circadian rhythm of insulin sensitivity in patients with NIDDM caused by cyclic changes in hepatic glucose production. Diabetes 45, 1044–1050 (1996).
pubmed: 8690150 doi: 10.2337/diab.45.8.1044
Radziuk, J. & Pye, S. Diurnal rhythm in endogenous glucose production is a major contributor to fasting hyperglycaemia in type 2 diabetes. Suprachiasmatic deficit or limit cycle behaviour? Diabetologia 49, 1619–1628 (2006).
pubmed: 16752180 doi: 10.1007/s00125-006-0273-9
Albus, H., Vansteensel, M. J., Michel, S., Block, G. D. & Meijer, J. H. A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr. Biol. 15, 886–893 (2005).
pubmed: 15916945 doi: 10.1016/j.cub.2005.03.051
Choi, H. J. et al. Excitatory actions of GABA in the suprachiasmatic nucleus. J. Neurosci. 28, 5450–5459 (2008).
pubmed: 18495878 pmcid: 2570697 doi: 10.1523/JNEUROSCI.5750-07.2008
Freeman, G. M., Jr, Krock, R. M., Aton, S. J., Thaben, P. & Herzog, E. D. GABA networks destabilize genetic oscillations in the circadian pacemaker. Neuron 78, 799–806 (2013).
pubmed: 23764285 pmcid: 3683151 doi: 10.1016/j.neuron.2013.04.003
Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154 (2011).
pubmed: 21745644 pmcid: 3134797 doi: 10.1016/j.neuron.2011.05.028
Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).
pubmed: 20023653 doi: 10.1038/nn.2467
Siepka, S. M. & Takahashi, J. S. Methods to record circadian rhythm wheel running activity in mice. Methods Enzymol. 393, 230–239 (2005).
pubmed: 15817291 pmcid: 3770725 doi: 10.1016/S0076-6879(05)93008-5
Atasoy, D., Aponte, Y., Su, H. H. & Sternson, S. M. A FLEX switch targets channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008).
pubmed: 18614669 pmcid: 2593125 doi: 10.1523/JNEUROSCI.1954-08.2008
Sprengel, R. & Hasan, M. T. Tetracycline-controlled genetic switches. Handb. Exp. Pharmacol. 178, 49–72 (2007).
doi: 10.1007/978-3-540-35109-2_3
Ochoa, C. D., Alexeyev, M., Pastukh, V., Balczon, R. & Stevens, T. Pseudomonas aeruginosa exotoxin Y is a promiscuous cyclase that increases endothelial tau phosphorylation and permeability. J. Biol. Chem. 287, 25407–25418 (2012).
pubmed: 22637478 pmcid: 3408204 doi: 10.1074/jbc.M111.301440
Hockemeyer, D. et al. A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell 3, 346–353 (2008).
pubmed: 18786421 pmcid: 4097107 doi: 10.1016/j.stem.2008.08.014
Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).
pubmed: 26889809 pmcid: 4759656 doi: 10.1016/j.neuron.2016.01.040
Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011).
pubmed: 21364278 pmcid: 3069789 doi: 10.1172/JCI46229
Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).
pubmed: 17360345 pmcid: 1829280 doi: 10.1073/pnas.0700293104
Ren, H. et al. FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell 149, 1314–1326 (2012).
pubmed: 22682251 pmcid: 3613436 doi: 10.1016/j.cell.2012.04.032
Liu, T. et al. Fasting activation of AgRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone. Neuron 73, 511–522 (2012).
pubmed: 22325203 pmcid: 3278709 doi: 10.1016/j.neuron.2011.11.027
Fenselau, H. et al. A rapidly acting glutamatergic ARC→PVH satiety circuit postsynaptically regulated by α-MSH. Nat. Neurosci. 20, 42–51 (2017).
pubmed: 27869800 doi: 10.1038/nn.4442
Itri, J., Michel, S., Waschek, J. A. & Colwell, C. S. Circadian rhythm in inhibitory synaptic transmission in the mouse suprachiasmatic nucleus. J. Neurophysiol. 92, 311–319 (2004).
pubmed: 14973316 doi: 10.1152/jn.01078.2003
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).
pubmed: 23618408 pmcid: 4053844 doi: 10.1186/gb-2013-14-4-r36
Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
pubmed: 25260700 doi: 10.1093/bioinformatics/btu638
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
pubmed: 20979621 pmcid: 3218662 doi: 10.1186/gb-2010-11-10-r106
Danne, T. et al. International consensus on use of continuous glucose monitoring. Diabetes Care 40, 1631–1640 (2017).
pubmed: 29162583 pmcid: 6467165 doi: 10.2337/dc17-1600
Faraco, G. et al. Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated TH17 response. Nat. Neurosci. 21, 240–249 (2018).
pubmed: 29335605 pmcid: 6207376 doi: 10.1038/s41593-017-0059-z
Peixoto, R. T., Wang, W., Croney, D. M., Kozorovitskiy, Y. & Sabatini, B. L. Early hyperactivity and precocious maturation of corticostriatal circuits in Shank3B
pubmed: 26928064 pmcid: 4846490 doi: 10.1038/nn.4260
Witton, J. et al. Hippocampal circuit dysfunction in the Tc1 mouse model of Down syndrome. Nat. Neurosci. 18, 1291–1298 (2015).
pubmed: 26237367 pmcid: 4552261 doi: 10.1038/nn.4072
Xu, P. et al. Estrogen receptor-α in medial amygdala neurons regulates body weight. J. Clin. Invest. 125, 2861–2876 (2015).
pubmed: 26098212 pmcid: 4563687 doi: 10.1172/JCI80941
Perusini, J. N. et al. Optogenetic stimulation of dentate gyrus engrams restores memory in Alzheimer’s disease mice. Hippocampus 27, 1110–1122 (2017).
pubmed: 28667669 pmcid: 5610644 doi: 10.1002/hipo.22756
Wang, W. et al. Chemogenetic activation of prefrontal cortex rescues synaptic and behavioral deficits in a mouse model of 16p11.2 deletion syndrome. J. Neurosci. 38, 5939–5948 (2018).
pubmed: 29853627 pmcid: 6021990 doi: 10.1523/JNEUROSCI.0149-18.2018

Auteurs

Guolian Ding (G)

Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX, USA.

Xin Li (X)

Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX, USA.

Xinguo Hou (X)

Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China.

Wenjun Zhou (W)

Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX, USA.

Yingyun Gong (Y)

Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX, USA.
Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.

Fuqiang Liu (F)

Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China.

Yanlin He (Y)

USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
Laboratory of Brain Glycemia and Metabolism Control, Pennington Biomedical Research Center, Baton Rouge, LA, USA.

Jia Song (J)

Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China.

Jing Wang (J)

Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China.

Paul Basil (P)

Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX, USA.

Wenbo Li (W)

Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX, USA.

Sichong Qian (S)

Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX, USA.

Pradip Saha (P)

Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX, USA.
Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.

Jinbang Wang (J)

Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China.

Chen Cui (C)

Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China.

Tingting Yang (T)

Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX, USA.
USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.

Kexin Zou (K)

Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.

Younghun Han (Y)

Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA.

Christopher I Amos (CI)

Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA.

Yong Xu (Y)

USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.

Li Chen (L)

Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China. chenli3@medmail.com.cn.

Zheng Sun (Z)

Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX, USA. zheng.sun@bcm.edu.
Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. zheng.sun@bcm.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH