REV-ERB in GABAergic neurons controls diurnal hepatic insulin sensitivity.
Animals
Blood Glucose
Circadian Clocks
Circadian Rhythm
Diabetes Mellitus, Type 2
Female
GABAergic Neurons
/ physiology
Glucose
/ metabolism
Humans
Insulin Resistance
Liver
/ physiology
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Middle Aged
Nuclear Receptor Subfamily 1, Group D, Member 1
/ physiology
Photoperiod
Suprachiasmatic Nucleus
/ cytology
Synaptic Transmission
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
04 2021
04 2021
Historique:
received:
17
06
2020
accepted:
12
02
2021
pubmed:
26
3
2021
medline:
11
1
2022
entrez:
25
3
2021
Statut:
ppublish
Résumé
Systemic insulin sensitivity shows a diurnal rhythm with a peak upon waking
Identifiants
pubmed: 33762728
doi: 10.1038/s41586-021-03358-w
pii: 10.1038/s41586-021-03358-w
pmc: PMC8085086
mid: NIHMS1673610
doi:
Substances chimiques
Blood Glucose
0
Nuclear Receptor Subfamily 1, Group D, Member 1
0
Glucose
IY9XDZ35W2
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
763-767Subventions
Organisme : NIH HHS
ID : S10 OD016167
Pays : United States
Organisme : NIA NIH HHS
ID : R03 AG070687
Pays : United States
Organisme : NICHD NIH HHS
ID : U54 HD083092
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK056338
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK111436
Pays : United States
Organisme : NIGMS NIH HHS
ID : P20 GM135002
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK114356
Pays : United States
Organisme : NIDDK NIH HHS
ID : R00 DK099443
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL153320
Pays : United States
Organisme : NCI NIH HHS
ID : R21 CA215591
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG069966
Pays : United States
Organisme : NCI NIH HHS
ID : P50 CA126752
Pays : United States
Organisme : NIEHS NIH HHS
ID : P30 ES030285
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA125123
Pays : United States
Organisme : NHGRI NIH HHS
ID : UM1 HG006348
Pays : United States
Organisme : NICHD NIH HHS
ID : P50 HD103555
Pays : United States
Organisme : NIEHS NIH HHS
ID : R01 ES027544
Pays : United States
Commentaires et corrections
Type : ErratumIn
Références
Shi, S. Q., Ansari, T. S., McGuinness, O. P., Wasserman, D. H. & Johnson, C. H. Circadian disruption leads to insulin resistance and obesity. Curr. Biol. 23, 372–381 (2013).
pubmed: 23434278
pmcid: 3595381
doi: 10.1016/j.cub.2013.01.048
Coomans, C. P. et al. Detrimental effects of constant light exposure and high-fat diet on circadian energy metabolism and insulin sensitivity. FASEB J. 27, 1721–1732 (2013).
pubmed: 23303208
doi: 10.1096/fj.12-210898
O’Neal, T. B. & Luther, E. E. Dawn phenomenon. https://www.statpearls.com/articlelibrary/viewarticle/20266/ (StatPearls Publishing, 2020).
Monnier, L., Colette, C., Dejager, S. & Owens, D. Magnitude of the dawn phenomenon and its impact on the overall glucose exposure in type 2 diabetes: is this of concern? Diabetes Care 36, 4057–4062 (2013).
pubmed: 24170753
pmcid: 3836163
doi: 10.2337/dc12-2127
Hastings, M. H., Maywood, E. S. & Brancaccio, M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat. Rev. Neurosci. 19, 453–469 (2018).
pubmed: 29934559
doi: 10.1038/s41583-018-0026-z
Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).
pubmed: 25349387
pmcid: 4234565
doi: 10.1073/pnas.1408886111
Cho, H. et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485, 123–127 (2012).
pubmed: 22460952
pmcid: 3367514
doi: 10.1038/nature11048
Zhang, Y. et al. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science 348, 1488–1492 (2015).
pubmed: 26044300
pmcid: 4613749
doi: 10.1126/science.aab3021
Doi, M. et al. Circadian regulation of intracellular G-protein signalling mediates intercellular synchrony and rhythmicity in the suprachiasmatic nucleus. Nat. Commun. 2, 327 (2011).
pubmed: 21610730
doi: 10.1038/ncomms1316
Tu, S. et al. Takusan: a large gene family that regulates synaptic activity. Neuron 55, 69–85 (2007).
pubmed: 17610818
pmcid: 2902460
doi: 10.1016/j.neuron.2007.06.021
Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307–320 (2002).
pubmed: 12015981
doi: 10.1016/S0092-8674(02)00722-5
Adelmant, G., Bègue, A., Stéhelin, D. & Laudet, V. A functional Rev-erbα responsive element located in the human Rev-erbα promoter mediates a repressing activity. Proc. Natl Acad. Sci. USA 93, 3553–3558 (1996).
pubmed: 8622974
pmcid: 39648
doi: 10.1073/pnas.93.8.3553
Carroll, M. F. & Schade, D. S. The dawn phenomenon revisited: implications for diabetes therapy. Endocr. Pract. 11, 55–64 (2005).
pubmed: 16033737
doi: 10.4158/EP.11.1.55
Porcellati, F., Lucidi, P., Bolli, G. B. & Fanelli, C. G. Thirty years of research on the dawn phenomenon: lessons to optimize blood glucose control in diabetes. Diabetes Care 36, 3860–3862 (2013).
pubmed: 24265365
pmcid: 3836156
doi: 10.2337/dc13-2088
Cuesta, M., Boudreau, P., Cermakian, N. & Boivin, D. B. Rapid resetting of human peripheral clocks by phototherapy during simulated night shift work. Sci. Rep. 7, 16310 (2017).
pubmed: 29176713
pmcid: 5701225
doi: 10.1038/s41598-017-16429-8
Akashi, M. et al. Noninvasive method for assessing the human circadian clock using hair follicle cells. Proc. Natl Acad. Sci. USA 107, 15643–15648 (2010).
pubmed: 20798039
pmcid: 2932591
doi: 10.1073/pnas.1003878107
la Fleur, S. E., Kalsbeek, A., Wortel, J., Fekkes, M. L. & Buijs, R. M. A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. Diabetes 50, 1237–1243 (2001).
pubmed: 11375322
doi: 10.2337/diabetes.50.6.1237
Coomans, C. P. et al. The suprachiasmatic nucleus controls circadian energy metabolism and hepatic insulin sensitivity. Diabetes 62, 1102–1108 (2013).
pubmed: 23274903
pmcid: 3609590
doi: 10.2337/db12-0507
Foppen, E., Tan, A. A., Ackermans, M. T., Fliers, E. & Kalsbeek, A. Suprachiasmatic nucleus neuropeptides and their control of endogenous glucose production. J. Neuroendocrinol. 28, https://doi.org/10.1111/jne.12365 (2016).
Kalsbeek, A., Yi, C.-X., La Fleur, S. E. & Fliers, E. The hypothalamic clock and its control of glucose homeostasis. Trends Endocrinol. Metab. 21, 402–410 (2010).
pubmed: 20303779
doi: 10.1016/j.tem.2010.02.005
Bolli, G. B. et al. Demonstration of a dawn phenomenon in normal human volunteers. Diabetes 33, 1150–1153 (1984).
pubmed: 6389230
doi: 10.2337/diab.33.12.1150
Van Cauter, E., Polonsky, K. S. & Scheen, A. J. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr. Rev. 18, 716–738 (1997).
pubmed: 9331550
Boden, G., Chen, X. & Urbain, J. L. Evidence for a circadian rhythm of insulin sensitivity in patients with NIDDM caused by cyclic changes in hepatic glucose production. Diabetes 45, 1044–1050 (1996).
pubmed: 8690150
doi: 10.2337/diab.45.8.1044
Radziuk, J. & Pye, S. Diurnal rhythm in endogenous glucose production is a major contributor to fasting hyperglycaemia in type 2 diabetes. Suprachiasmatic deficit or limit cycle behaviour? Diabetologia 49, 1619–1628 (2006).
pubmed: 16752180
doi: 10.1007/s00125-006-0273-9
Albus, H., Vansteensel, M. J., Michel, S., Block, G. D. & Meijer, J. H. A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr. Biol. 15, 886–893 (2005).
pubmed: 15916945
doi: 10.1016/j.cub.2005.03.051
Choi, H. J. et al. Excitatory actions of GABA in the suprachiasmatic nucleus. J. Neurosci. 28, 5450–5459 (2008).
pubmed: 18495878
pmcid: 2570697
doi: 10.1523/JNEUROSCI.5750-07.2008
Freeman, G. M., Jr, Krock, R. M., Aton, S. J., Thaben, P. & Herzog, E. D. GABA networks destabilize genetic oscillations in the circadian pacemaker. Neuron 78, 799–806 (2013).
pubmed: 23764285
pmcid: 3683151
doi: 10.1016/j.neuron.2013.04.003
Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154 (2011).
pubmed: 21745644
pmcid: 3134797
doi: 10.1016/j.neuron.2011.05.028
Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).
pubmed: 20023653
doi: 10.1038/nn.2467
Siepka, S. M. & Takahashi, J. S. Methods to record circadian rhythm wheel running activity in mice. Methods Enzymol. 393, 230–239 (2005).
pubmed: 15817291
pmcid: 3770725
doi: 10.1016/S0076-6879(05)93008-5
Atasoy, D., Aponte, Y., Su, H. H. & Sternson, S. M. A FLEX switch targets channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008).
pubmed: 18614669
pmcid: 2593125
doi: 10.1523/JNEUROSCI.1954-08.2008
Sprengel, R. & Hasan, M. T. Tetracycline-controlled genetic switches. Handb. Exp. Pharmacol. 178, 49–72 (2007).
doi: 10.1007/978-3-540-35109-2_3
Ochoa, C. D., Alexeyev, M., Pastukh, V., Balczon, R. & Stevens, T. Pseudomonas aeruginosa exotoxin Y is a promiscuous cyclase that increases endothelial tau phosphorylation and permeability. J. Biol. Chem. 287, 25407–25418 (2012).
pubmed: 22637478
pmcid: 3408204
doi: 10.1074/jbc.M111.301440
Hockemeyer, D. et al. A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell 3, 346–353 (2008).
pubmed: 18786421
pmcid: 4097107
doi: 10.1016/j.stem.2008.08.014
Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).
pubmed: 26889809
pmcid: 4759656
doi: 10.1016/j.neuron.2016.01.040
Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011).
pubmed: 21364278
pmcid: 3069789
doi: 10.1172/JCI46229
Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).
pubmed: 17360345
pmcid: 1829280
doi: 10.1073/pnas.0700293104
Ren, H. et al. FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell 149, 1314–1326 (2012).
pubmed: 22682251
pmcid: 3613436
doi: 10.1016/j.cell.2012.04.032
Liu, T. et al. Fasting activation of AgRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone. Neuron 73, 511–522 (2012).
pubmed: 22325203
pmcid: 3278709
doi: 10.1016/j.neuron.2011.11.027
Fenselau, H. et al. A rapidly acting glutamatergic ARC→PVH satiety circuit postsynaptically regulated by α-MSH. Nat. Neurosci. 20, 42–51 (2017).
pubmed: 27869800
doi: 10.1038/nn.4442
Itri, J., Michel, S., Waschek, J. A. & Colwell, C. S. Circadian rhythm in inhibitory synaptic transmission in the mouse suprachiasmatic nucleus. J. Neurophysiol. 92, 311–319 (2004).
pubmed: 14973316
doi: 10.1152/jn.01078.2003
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).
pubmed: 23618408
pmcid: 4053844
doi: 10.1186/gb-2013-14-4-r36
Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
pubmed: 25260700
doi: 10.1093/bioinformatics/btu638
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
pubmed: 20979621
pmcid: 3218662
doi: 10.1186/gb-2010-11-10-r106
Danne, T. et al. International consensus on use of continuous glucose monitoring. Diabetes Care 40, 1631–1640 (2017).
pubmed: 29162583
pmcid: 6467165
doi: 10.2337/dc17-1600
Faraco, G. et al. Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated TH17 response. Nat. Neurosci. 21, 240–249 (2018).
pubmed: 29335605
pmcid: 6207376
doi: 10.1038/s41593-017-0059-z
Peixoto, R. T., Wang, W., Croney, D. M., Kozorovitskiy, Y. & Sabatini, B. L. Early hyperactivity and precocious maturation of corticostriatal circuits in Shank3B
pubmed: 26928064
pmcid: 4846490
doi: 10.1038/nn.4260
Witton, J. et al. Hippocampal circuit dysfunction in the Tc1 mouse model of Down syndrome. Nat. Neurosci. 18, 1291–1298 (2015).
pubmed: 26237367
pmcid: 4552261
doi: 10.1038/nn.4072
Xu, P. et al. Estrogen receptor-α in medial amygdala neurons regulates body weight. J. Clin. Invest. 125, 2861–2876 (2015).
pubmed: 26098212
pmcid: 4563687
doi: 10.1172/JCI80941
Perusini, J. N. et al. Optogenetic stimulation of dentate gyrus engrams restores memory in Alzheimer’s disease mice. Hippocampus 27, 1110–1122 (2017).
pubmed: 28667669
pmcid: 5610644
doi: 10.1002/hipo.22756
Wang, W. et al. Chemogenetic activation of prefrontal cortex rescues synaptic and behavioral deficits in a mouse model of 16p11.2 deletion syndrome. J. Neurosci. 38, 5939–5948 (2018).
pubmed: 29853627
pmcid: 6021990
doi: 10.1523/JNEUROSCI.0149-18.2018