Genetics of pheochromocytoma and paraganglioma.
Journal
Current opinion in endocrinology, diabetes, and obesity
ISSN: 1752-2978
Titre abrégé: Curr Opin Endocrinol Diabetes Obes
Pays: England
ID NLM: 101308636
Informations de publication
Date de publication:
01 06 2021
01 06 2021
Historique:
pubmed:
26
3
2021
medline:
28
9
2021
entrez:
25
3
2021
Statut:
ppublish
Résumé
This review summarizes our current understanding of germline and somatic genetics and genomics of pheochromocytomas and paragangliomas (PCC/PGL), describes existing knowledge gaps, and discusses future research directions. Germline pathogenic variants (PVs) are found in up to 40% of those with PCC/PGL. Tumors with germline PVs are broadly categorized as Cluster 1 (pseudohypoxia), including those with SDH, VHL, FH, and EPAS1 PVs, or Cluster 2 (kinase signaling) including those with NF1, RET, TMEM127, and MAX PVs. Somatic driver mutations exist in some of the same genes (RET, VHL, NF1, EPAS1) as well as in additional genes including HRAS, CSDE1 and genes involved in cell immortalization (ATRX and TERT). Other somatic driver events include recurrent fusion genes involving MAML3. PCC/PGL have the highest association with germline PVs of all human solid tumors. Expanding our understanding of the molecular pathogenesis of PCC/PGL is essential to advancements in diagnosis and surveillance and the development of novel therapies for these unique tumors.
Identifiants
pubmed: 33764930
doi: 10.1097/MED.0000000000000634
pii: 01266029-202106000-00006
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
283-290Subventions
Organisme : NCATS NIH HHS
ID : KL2 TR001879
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA246586
Pays : United States
Informations de copyright
Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.
Références
Lenders JW, Eisenhofer G, Mannelli M, et al. Phaeochromocytoma. Lancet 2005; 366:665–675.
Gupta G, Pacak K. Precision medicine: an update on genotype/biochemical phenotype relationships in pheochromocytoma/paraganglioma patients. Endocr Pract 2017; 23:690–704.
Mannelli M, Lenders JW, Pacak K, et al. Subclinical phaeochromocytoma. Best Pract Res Clin Endocrinol Metab 2012; 26:507–515.
Wachtel H, Cerullo I, Bartlett EK, et al. Clinicopathologic characteristics of incidentally identified pheochromocytoma. Ann Surg Oncol 2015; 22:132–138.
Oshmyansky AR, Mahammedi A, Dackiw A, et al. Serendipity in the diagnosis of pheochromocytoma. J Comput Assist Tomogr 2013; 37:820–823.
Dahia PL. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat Rev Cancer 2014; 14:108–119.
Fishbein L, Leshchiner I, Walter V, et al. Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell 2017; 31:181–193.
Cawthon RM, Weiss R, Xu GF, et al. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 1990; 62:193–201.
Ikeda I, Ishizaka Y, Tahira T, et al. Specific expression of the ret proto-oncogene in human neuroblastoma cell lines. Oncogene 1990; 5:1291–1296.
Tahira T, Ishizaka Y, Itoh F, et al. Characterization of ret proto-oncogene mRNAs encoding two isoforms of the protein product in a human neuroblastoma cell line. Oncogene 1990; 5:97–102.
Amar L, Servais A, Gimenez-Roqueplo AP, et al. Year of diagnosis, features at presentation, and risk of recurrence in patients with pheochromocytoma or secreting paraganglioma. J Clin Endocrinol Metab 2005; 90:2110–2116.
Dahia PL, Ross KN, Wright ME, et al. A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet 2005; 1:72–80.
Favier J, Amar L, Gimenez-Roqueplo AP. Paraganglioma and phaeochromocytoma: from genetics to personalized medicine. Nat Rev Endocrinol 2015; 11:101–111.
Fishbein L, Merrill S, Fraker DL, et al. Inherited mutations in pheochromocytoma and paraganglioma: why all patients should be offered genetic testing. Ann Surg Oncol 2013; 20:1444–1450.
Greenberg SE, Jacobs MF, Wachtel H, et al. Tumor detection rates in screening of individuals with SDHx-related hereditary paraganglioma-pheochromocytoma syndrome. Genet Med 2020; 22:2101–2107.
Gruber M, Simon MC. Hypoxia-inducible factors, hypoxia, and tumor angiogenesis. Curr Opin Hematol 2006; 13:169–174.
Cecchini G. Respiratory complex II: role in cellular physiology and disease. Biochim Biophys Acta 2013; 1827:541–542.
Selak MA, Armour SM, MacKenzie ED, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 2005; 7:77–85.
Else T, Greenberg S, Fishbein L. Hereditary Paraganglioma-Pheochromocytoma Syndromes. 2008 May 21 [Updated 2018 Oct 4]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1548/
Janeway KA, Kim SY, Lodish M, et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci USA 2011; 108:314–318.
Gill AJ, Hes O, Papathomas T, et al. Succinate dehydrogenase (SDH)-deficient renal carcinoma: a morphologically distinct entity: a clinicopathologic series of 36 tumors from 27 patients. Am J Surg Pathol 2014; 38:1588–1602.
Papathomas TG, Gaal J, Corssmit EP, et al. Nonpheochromocytoma (PCC)/paraganglioma (PGL) tumors in patients with succinate dehydrogenase-related PCC-PGL syndromes: a clinicopathological and molecular analysis. Eur J Endocrinol/Eur Fed Endocr Soc 2014; 170:1–12.
Vanharanta S, Buchta M, McWhinney SR, et al. Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am J Hum Genet 2004; 74:153–159.
Bausch B, Schiavi F, Ni Y, et al. Clinical characterization of the pheochromocytoma and paraganglioma susceptibility genes SDHA, TMEM127, MAX, and SDHAF2 for gene-informed prevention. JAMA Oncol 2017; 3:1204–1212.
Andrews KA, Ascher DB, Pires DEV, et al. Tumour risks and genotype-phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes SDHB, SDHC and SDHD. J Med Genet 2018; 55:384–394.
Rednam SP, Erez A, Druker H, et al. Von Hippel-Lindau and hereditary pheochromocytoma/paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 2017; 23:e68–e75.
Shen C, Kaelin WG Jr. The VHL/HIF axis in clear cell renal carcinoma. Semin Cancer Biol 2013; 23:18–25.
Chittiboina P, Lonser RR. Von Hippel-Lindau disease. Handbook of Clin Neurol 2015; 132:139–156.
Manski TJ, Heffner DK, Glenn GM, et al. Endolymphatic sac tumors. A source of morbid hearing loss in von Hippel-Lindau disease. J Am Med Assoc 1997; 277:1461–1466.
Binderup ML, Bisgaard ML, Harbud V, et al. Von Hippel-Lindau disease (vHL). National clinical guideline for diagnosis and surveillance in Denmark. 3rd edition. Danish Med J 2013; 60:B4763.
Maher ER, Neumann HP, Richard S. von Hippel-Lindau disease: a clinical and scientific review. Eur J Hum Genet 2011; 19:617–623.
Kim WY, Kaelin WG. Role of VHL gene mutation in human cancer. J Clin Oncol 2004; 22:4991–5004.
Maher ER, Webster AR, Richards FM, et al. Phenotypic expression in von Hippel-Lindau disease: correlations with germline VHL gene mutations. J Med Genet 1996; 33:328–332.
VHL Alliance website. Updated 10.9.2020. https://www.vhl.org/wp-content/uploads/2020/10/Active-Surveillance-Guidelines-2020.pdf. [Accessed January 2021]
Clark GR, Sciacovelli M, Gaude E, et al. Germline FH mutations presenting with pheochromocytoma. J Clin Endocrinol Metab 2014; 99:E2046–E2050.
Castro-Vega LJ, Buffet A, De Cubas AA, et al. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum Mol Genet 2014; 23:2440–2446.
Cascón A, Comino-Méndez I, Currás-Freixes M, et al. Whole-exome sequencing identifies MDH2 as a new familial paraganglioma gene. J Natl Cancer Inst 2015; 107: doi: 10.1093/jnci/djv053.
doi: 10.1093/jnci/djv053
Calsina B, Currás-Freixes M, Buffet A, et al. Role of MDH2 pathogenic variant in pheochromocytoma and paraganglioma patients. Genet Med 2018; 20:1652–1662.
Kaelin WG Jr. The VHL tumor suppressor gene: insights into oxygen sensing and cancer. Transac Am Clin Climatol Assoc 2017; 128:298–307.
Ladroue C, Carcenac R, Leporrier M, et al. PHD2 mutation and congenital erythrocytosis with paraganglioma. N Engl J Med 2008; 359:2685–2692.
Darr R, Nambuba J, Del Rivero J, et al. Novel insights into the polycythemia-paraganglioma-somatostatinoma syndrome. Endocr Relat Cancer 2016; 23:899–908.
Zhuang Z, Yang C, Lorenzo F, et al. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N Engl J Med 2012; 367:922–930.
Lorenzo FR, Yang C, Ng Tang Fui M, et al. A novel EPAS1/HIF2A germline mutation in a congenital polycythemia with paraganglioma. J Mol Med 2013; 91:507–512.
Mulligan LM, Eng C, Healey CS, et al. Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC. Nat Genet 1994; 6:70–74.
Donis-Keller H, Dou S, Chi D, et al. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet 1993; 2:851–856.
Fishbein L. Pheochromocytoma and paraganglioma: genetics, diagnosis, and treatment. Hematol/Oncol Clin N Am 2016; 30:135–150.
Siqueira DR, Ceolin L, Ferreira CV, et al. Role of RET genetic variants in MEN2-associated pheochromocytoma. E J Endocrinol/Eur Fed Endocr Soc 2014; 170:821–828.
Imai T, Uchino S, Okamoto T, et al. High penetrance of pheochromocytoma in multiple endocrine neoplasia 2 caused by germ line RET codon 634 mutation in Japanese patients. E J Endocrinol/Eur Fed Endocr Soc 2013; 168:683–687.
Wells SA Jr, Asa SL, Dralle H, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015; 25:567–610.
Iacobone M, Citton M, Viel G, et al. Surgical approaches in hereditary endocrine tumors. Updates Surg 2017; 69:181–191.
Lenders JW, Duh QY, Eisenhofer G, et al. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2014; 99:1915–1942.
Williams VC, Lucas J, Babcock MA, et al. Neurofibromatosis type 1 revisited. Pediatrics 2009; 123:124–133.
Bergqvist C, Servy A, Valeyrie-Allanore L, et al. Neurofibromatosis 1 French national guidelines based on an extensive literature review since 1966. Orphanet J Rare Dis 2020; 15:37.
Gutmann DH, Aylsworth A, Carey JC, et al. The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. J Am Med Assoc 1997; 278:51–57.
Anderson JL, Gutmann DH. Neurofibromatosis type 1. Handb Clin Neurol 2015; 132:75–86.
Walther MM, Herring J, Enquist E, et al. von Recklinghausen's disease and pheochromocytomas. J Urol 1999; 162:1582–1586.
Vlenterie M, Flucke U, Hofbauer LC, et al. Pheochromocytoma and gastrointestinal stromal tumors in patients with neurofibromatosis type I. Am J Med 2013; 126:174–180.
Shinall MC, Solórzano CC. Pheochromocytoma in neurofibromatosis type 1: when should it be suspected? Endocr Pract 2014; 20:792–796.
Moramarco J, El Ghorayeb N, Dumas N, et al. Pheochromocytomas are diagnosed incidentally and at older age in neurofibromatosis type 1. Clin Endocrinol 2017; 86:332–339.
Al-Sharefi A, Javaid U, Perros P, et al. Clinical presentation and outcomes of phaeochromocytomas/paragangliomas in neurofibromatosis Type 1. Eur Endocrinol 2019; 15:95–100.
Gruber LM, Erickson D, Babovic-Vuksanovic D, et al. Pheochromocytoma and paraganglioma in patients with neurofibromatosis type 1. Clin Endocrinol 2017; 86:141–149.
Képénékian L, Mognetti T, Lifante JC, et al. Interest of systematic screening of pheochromocytoma in patients with neurofibromatosis type 1. E J Endocrinol/Eur Fed Endocr Soc 2016; 175:335–344.
Petr EJ, Else T. Pheochromocytoma and paraganglioma in neurofibromatosis type 1: frequent surgeries and cardiovascular crises indicate the need for screening. Clin Diabetes Endocrinol 2018; 4:15.
Comino-Méndez I, Gracia-Aznárez FJ, Schiavi F, et al. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet 2011; 43:663–667.
Burnichon N, Cascón A, Schiavi F, et al. MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin Cancer Res 2012; 18:2828–2837.
Cascón A, Robledo M. MAX and MYC: a heritable breakup. Cancer Res 2012; 72:3119–3124.
Qin Y, Yao L, King EE, et al. Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat Genet 2010; 42:229–233.
Qin Y, Deng Y, Ricketts CJ, et al. The tumor susceptibility gene TMEM127 is mutated in renal cell carcinomas and modulates endolysosomal function. Hum Mol Genet 2014; 23:2428–2439.
Yao L, Schiavi F, Cascon A, et al. Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas. J Am Med Assoc 2010; 304:2611–2619.
Toledo SP, Lourenço DM Jr, Sekiya T, et al. Penetrance and clinical features of pheochromocytoma in a six-generation family carrying a germline TMEM127 mutation. J Clin Endocrinol Metab 2015; 100:E308–E318.
Armaiz-Pena G, Flores SK, Cheng ZM, et al. Genotype-phenotype features of germline variants of the TMEM127 pheochromocytoma susceptibility gene: a 10-year update. J Clin Endocrinol Metab 2021; 106:e350–e364.
Remacha L, Comino-Méndez I, Richter S, et al. Targeted exome sequencing of Krebs cycle genes reveals candidate cancer-predisposing mutations in pheochromocytomas and paragangliomas. Clin Cancer Res 2017; 23:6315–6324.
Remacha L, Currás-Freixes M, Torres-Ruiz R, et al. Gain-of-function mutations in DNMT3A in patients with paraganglioma. Genet Med 2018; 20:1644–1651.
Remacha L, Pirman D, Mahoney CE, et al. Recurrent germline DLST mutations in individuals with multiple pheochromocytomas and paragangliomas. Am J Hum Genet 2019; 104:651–664.
Crona J, Delgado Verdugo A, Maharjan R, et al. Somatic mutations in H-RAS in sporadic pheochromocytoma and paraganglioma identified by exome sequencing. J Clin Endocrinol Metab 2013; 98:E1266–E1271.
Burnichon N, Buffet A, Parfait B, et al. Somatic NF1 inactivation is a frequent event in sporadic pheochromocytoma. Hum Mol Genet 2012; 21:5397–5405.
Mihailovich M, Militti C, Gabaldón T, et al. Eukaryotic cold shock domain proteins: highly versatile regulators of gene expression. BioEssays 2010; 32:109–118.
McElhinny AS, Li JL, Wu L. Mastermind-like transcriptional co-activators: emerging roles in regulating cross talk among multiple signaling pathways. Oncogene 2008; 27:5138–5147.
Fishbein L, Khare S, Wubbenhorst B, et al. Whole-exome sequencing identifies somatic ATRX mutations in pheochromocytomas and paragangliomas. Nat Commun 2015; 6:6140.
Toledo RA, Qin Y, Cheng ZM, et al. Recurrent mutations of chromatin-remodeling genes and kinase receptors in pheochromocytomas and paragangliomas. Clin Cancer Res 2016; 22:2301–2310.
Dwight T, Flynn A, Amarasinghe K, et al. TERT structural rearrangements in metastatic pheochromocytomas. Endocr-Relat Cancer 2018; 25:1–9.
Job S, Draskovic I, Burnichon N, et al. Telomerase activation and ATRX mutations are independent risk factors for metastatic pheochromocytoma and paraganglioma. Clin Cancer Res 2019; 25:760–770.
Ben Aim L, Pigny P, Castro-Vega LJ, et al. Targeted next-generation sequencing detects rare genetic events in pheochromocytoma and paraganglioma. J Med Genet 2019; 56:513–520.
Taïeb D, Jha A, Treglia G, et al. Molecular imaging and radionuclide therapy of pheochromocytoma and paraganglioma in the era of genomic characterization of disease subgroups. Endocr-Relat Cancer 2019; 26:R627–R652.
Janssen I, Blanchet EM, Adams K, et al. Superiority of [68Ga]-DOTATATE PET/CT to other functional imaging modalities in the localization of SDHB-associated metastatic pheochromocytoma and paraganglioma. Clin Cancer Res 2015; 21:3888–3895.
Jha A, Ling A, Millo C, et al. Superiority of (68)Ga-DOTATATE over (18)F-FDG and anatomic imaging in the detection of succinate dehydrogenase mutation (SDHx)-related pheochromocytoma and paraganglioma in the pediatric population. Eur J Nucl Med Mol Imaging 2018; 45:787–797.
Wang L, Li Y, Guan X, et al. Exosomal double-stranded DNA as a biomarker for the diagnosis and preoperative assessment of pheochromocytoma and paraganglioma. Mol Cancer 2018; 17:128.
Calsina B, Castro-Vega LJ, Torres-Pérez R, et al. Integrative multiomics analysis identifies a prognostic miRNA signature and a targetable miR-21-3p/TSC2/mTOR axis in metastatic pheochromocytoma/paraganglioma. Theranostics 2019; 9:4946–4958.
Ayala-Ramirez M, Feng L, Johnson MM, et al. Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators. J Clin Endocrinol Metab 2011; 96:717–725.
Fishbein L, Ben-Maimon S, Keefe S, et al. SDHB mutation carriers with malignant pheochromocytoma respond better to CVD. Endocr Relat Cancer 2017; 24:L51–L55.
O’Kane GM, Ezzat S, Joshua AM, et al. A phase 2 trial of sunitinib in patients with progressive paraganglioma or pheochromocytoma: the SNIPP trial. Br J Cancer 2019; 120:1113–1119.
Ayala-Ramirez M, Chougnet CN, Habra MA, et al. Treatment with sunitinib for patients with progressive metastatic pheochromocytomas and sympathetic paragangliomas. J Clin Endocrinol Metab 2012; 97:4040–4050.
Hadoux J, Favier J, Scoazec JY, et al. SDHB mutations are associated with response to temozolomide in patients with metastatic pheochromocytoma or paraganglioma. Int J Cancer 2014; 135:2711–2720.
Roman-Gonzalez A, Jimenez C. Malignant pheochromocytoma-paraganglioma: pathogenesis, TNM staging, and current clinical trials. Curr Opin Endocrinol Diabetes Obes 2017; 24:174–183.
Study of Axitinib (AG-013736) With Evaluation of the VEGF-pathway in Pheochromocytoma/Paraganglioma. https://clinicaltrials.gov/ct2/show/NCT03839498?term=NCT03839498&draw=2&rank=1 [Accessed 2 November 2021]
Cabozantinib S-malate in Treating Patients With Metastatic Pheochromocytomas or Paragangliomas That Cannot Be Removed by Surgery. https://clinicaltrials.gov/ct2/show/NCT02302833?term=NCT02302833&draw=2&rank=1 [Accessed 2 November 2021]
Lenvatinib in Treating Patients With Metastatic or Advanced Pheochromocytoma or Paraganglioma That Cannot Be Removed by Surgery. https://clinicaltrials.gov/ct2/show/NCT03008369?term=NCT03008369&draw=2&rank=1 [Accessed 2 November 2021]
Study Of Sunitinib In Patients With Recurrent Paraganglioma/Pheochromocytoma. https://clinicaltrials.gov/ct2/show/NCT00843037?term=NCT00843037&draw=2&rank=1 [Accessed 2 November 2021]
Tipifarnib for the Treatment of Advanced Solid Tumors, Lymphoma, or Histiocytic Disorders With HRAS Gene Alterations, a Pediatric MATCH Treatment Trial. https://clinicaltrials.gov/ct2/show/NCT04284774?term=NCT04284774&draw=2&rank=1 [Accessed 2 November 2021]
Martínez-Sáez O, Gajate Borau P, Alonso-Gordoa T, et al. Targeting HIF-2 α in clear cell renal cell carcinoma: a promising therapeutic strategy. Criti Rev Oncol/Hematol 2017; 111:117–123.
Nivolumab and Ipilimumab in Treating Patients With Rare Tumors. https://clinicaltrials.gov/ct2/show/NCT02834013?term=NCT02834013&draw=2&rank=1 [Accessed 2 November 2021]
Pembrolizumab in Treating Patients With Rare Tumors That Cannot Be Removed by Surgery or Are Metastatic. https://clinicaltrials.gov/ct2/show/NCT02721732?term=NCT02721732&draw=2&rank=1 [Accessed 2 November 2021]
Testing the Addition of an Anticancer Drug, Olaparib, to the Usual Chemotherapy (Temozolomide) for Advanced Neuroendocrine Cancer. https://clinicaltrials.gov/ct2/show/NCT04394858?term=NCT04394858&draw=2&rank=1 [Accessed 2 November 2021]
Castro-Vega L, Letouzé E, Burnichon N, et al. Multi-omics analysis defines core genomic alterations in pheochromocytomas and paragangliomas. Nat Commun 2015; 6:6044.
van der Tuin K, Mensenkamp AR, Tops CMJ, et al. Clinical aspects of SDHA-related pheochromocytoma and paraganglioma: a nationwide study. J Clin Endocrinol Metab 2018; 103:438–445.
Jochmanova I, Wolf KI, King KS, et al. SDHB-related pheochromocytoma and paraganglioma penetrance and genotype-phenotype correlations. J Cancer Res Clin Oncol 2017; 143:1421–1435.
Bausch B, Borozdin W, Neumann HP. Clinical and genetic characteristics of patients with neurofibromatosis type 1 and pheochromocytoma. N Engl J Med 2006; 354:2729–2731.