Central nervous system infections and antimicrobial resistance: an evolving challenge.
Journal
Current opinion in neurology
ISSN: 1473-6551
Titre abrégé: Curr Opin Neurol
Pays: England
ID NLM: 9319162
Informations de publication
Date de publication:
01 06 2021
01 06 2021
Historique:
pubmed:
27
3
2021
medline:
30
9
2021
entrez:
26
3
2021
Statut:
ppublish
Résumé
Antimicrobial resistance is an increasing threat to patients also in nosocomial central nervous system (CNS) infections. The present review focusses on optimizing intravenous treatment in order to achieve sufficient concentrations of antibiotics in the different compartments of the CNS when the causative pathogens have reduced sensitivity to antibiotics or/and the impairment of the blood-cerebrospinal fluid (CSF) and blood-brain barrier is mild. Experience has been gathered with treatment protocols for several established antibiotics using increased doses or continuous instead of intermittent intravenous therapy. Continuous infusion in general does not increase the average CSF concentrations (or the area under the concentration-time curve in CSF) compared to equal daily doses administered by short-term infusion. In some cases, it is postulated that it can reduce toxicity caused by high peak plasma concentrations. In case reports, new β-lactam/β-lactamase inhibitor combinations were shown to be effective treatments of CNS infections. Several antibiotics with a low to moderate toxicity (in particular, β-lactam antibiotics, fosfomycin, trimethoprim-sulfamethoxazole, rifampicin, vancomycin) can be administered at increased doses compared to traditional dosing with low or tolerable adverse effects. Intrathecal administration of antibiotics is only indicated, when multiresistant pathogens cannot be eliminated by systemic therapy. Intravenous should always accompany intrathecal treatment.
Identifiants
pubmed: 33767092
doi: 10.1097/WCO.0000000000000931
pii: 00019052-202106000-00028
doi:
Substances chimiques
Anti-Bacterial Agents
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
456-467Informations de copyright
Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.
Références
World Economic Forum. Antimicrobial resistance. 2018. Available at: http://reports.weforum.org/global-risks-2018/antimicrobial-resistance/ . [Accessed 1 December 2020].
Chusri S, Sakarunchai I, Kositpantawong N, et al. Outcomes of adjunctive therapy with intrathecal or intraventricular administration of colistin for postneurosurgical meningitis and ventriculitis due to carbapenem-resistant Acinetobacter baumannii . Int J Antimicrob Agents 2018; 51:646–650.
Chen H, Guo X, Xie D, et al. A clinical study on the use of intraventricular polymyxin B supplemented by continuous external ventricular drainage in the treatment of drug-resistant Gram-negative bacilli intracranial infection. Infect Drug Resist 2020; 13:2963–2970.
Sime FB, Lassig-Smith M, Starr T, et al. Cerebrospinal fluid penetration of ceftolozane/tazobactam in critically ill patients with an indwelling external ventricular drain. Antimicrob Agents Chemother 2020; 65:e01698-20.
Lee BJ, Vu BN, Seddon AN, et al. Treatment considerations for CNS infections caused by vancomycin-resistant Enterococcus faecium : a focused review of linezolid and daptomycin. Ann Pharmacother 2020; 54:1243–1251.
Pandey S, Li L, Deng XY, et al. Outcome following the treatment of ventriculitis caused by multi/extensive drug resistance Gram negative bacilli; Acinetobacter baumannii and Klebsiella pneumoniae . Front Neurol 2019; 9:1174.
Karakonstantis S, Kritsotakis EI, Gikas A. Treatment options for K. pneumoniae , P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: an approach based on the mechanisms of resistance to carbapenems. Infection 2020; 48:835–851.
Davson H, Welch K, Segal MB. Physiology and pathophysiology of the cerebrospinal fluid. Edinburgh, London: Churchill Livingstone; 1987.
Whish S, Dziegielewska KM, Møllgård K, et al. The inner CSF–brain barrier: developmentally controlled access to the brain via intercellular junctions. Front Neurosci 2015; 9:16.
Gerber J, Tumani H, Kolenda H, Nau R. Lumbar and ventricular CSF protein, leukocytes, and lactate in suspected bacterial CNS infections. Neurology 1998; 51:1710–1714.
Djukic M, Munz M, Sörgel F, et al. Overton's rule helps to estimate the penetration of antiinfectives into patients’ cerebrospinal fluid. Antimicrob Agents Chemother 2012; 56:979–988.
Nau R, Blei C, Eiffert H. Intrathecal antibacterial and antifungal therapies. Clin Microbiol Rev 2020; 33:e00190-19.
Bodilsen J, Brouwer MC, Nielsen H, van de Beek D. Antiinfective treatment of brain abscess. Expert Rev Anti Infect Ther 2018; 16:565–578.
Lutsar I, Ahmed A, Friedland IR, et al. Pharmacodynamics and bactericidal activity of ceftriaxone therapy in experimental cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother 1997; 41:2414–2417.
Lutsar I, McCracken GH Jr, Friedland IR. Antibiotic pharmacodynamics in cerebrospinal fluid. Clin Infect Dis 1998; 27:1117–1127.
Nau R, Sörgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev 2010; 23:858–883.
Täuber MG, Doroshow CA, Hackbarth CJ, et al. Antibacterial activity of beta-lactam antibiotics in experimental meningitis due to Streptococcus pneumoniae . J Infect Dis 1984; 149:568–574.
Nau R, Schmidt T, Kaye K, et al. Quinolone antibiotics in therapy of experimental pneumococcal meningitis in rabbits. Antimicrob Agents Chemother 1995; 39:593–597.
Nau R, Zysk G, Reinert RR, et al. Activity of fosfomycin in a rabbit model of experimental pneumococcal meningitis. J Antimicrob Chemother 1995; 36:997–1004.
Hof H, Nichterlein T, Kretschmar M. Management of listeriosis. Clin Microbiol Rev 1997; 10:345–357.
Kassel LE, Van Matre ET, Foster CJ, et al. A randomized pharmacokinetic and pharmacodynamic evaluation of every 8-h and 12-h dosing strategies of vancomycin and cefepime in neurocritically ill patients. Pharmacotherapy 2018; 38:921–934.
Mezochow A, Thakur KT, Zentner I, et al. Attainment of target rifampicin concentrations in cerebrospinal fluid during treatment of tuberculous meningitis. Int J Infect Dis 2019; 84:15–21.
Dacey RG, Sande MA. Effect of probenecid on cerebrospinal fluid concentrations of penicillin and cephalosporin derivatives. Antimicrob Agents Chemother 1974; 6:437–441.
Chen X, Keep RF, Liang Y, et al. Influence of peptide transporter 2 (PEPT2) on the distribution of cefadroxil in mouse brain: a microdialysis study. Biochem Pharmacol 2017; 131:89–97.
Nau R, Sörgel F, Prange HW. Pharmacokinetic optimisation of the treatment of bacterial central nervous system infections. Clin Pharmacokinet 1998; 35:223–246.
Kaiser AB, McGee ZA. Aminoglycoside therapy of Gram-negative bacillary meningitis. N Engl J Med 1975; 293:1215–1220.
Shapiro WR, Young DF, Mehta BM. Methotrexate: distribution in cerebrospinal fluid after intravenous, ventricular and lumbar injections. N Engl J Med 1975; 293:161–166.
Strong JM, Collins JM, Lester C, Poplack DG. Pharmacokinetics of intraventricular and intravenous N,N’,N”-triethylenethiophosphoramide (thiotepa) in rhesus monkeys and humans. Cancer Res 1986; 46:6101–6104.
Ersoy SC, Heithoff DM, Barnes L, 5th, et al. Correcting a fundamental flaw in the paradigm for antimicrobial susceptibility testing. EBioMedicine 2017; 20:173–181.
Meurer M, de Buhr N, Unger LM, et al. Comparing cathelicidin susceptibility of the meningitis pathogens Streptococcus suis and Escherichia coli in culture medium in contrast to porcine or human cerebrospinal fluid. Front Microbiol 2020; 10:2911doi: 10.3389/fmicb.2019.0291.
doi: 10.3389/fmicb.2019.0291
Kumta N, Roberts JA, Lipman J, et al. A systematic review of studies reporting antibiotic pharmacokinetic data in the cerebrospinal fluid of critically ill patients with uninflamed meninges. Antimicrob Agents Chemother 2020; 65:e01998–e2020.
Simon T, Jackson E, Giamas G. Breaking through the glioblastoma micro-environment via extracellular vesicles. Oncogene 2020; 39:4477–4490.
Parodi A, Rudzińska M, Deviatkin AA, et al. Established and emerging strategies for drug delivery across the blood–brain barrier in brain cancer. Pharmaceutics 2019; 11:245.
Martin-Canal G, Saavedra A, Asensi JM, et al. Meropenem monotherapy is as effective as and safer than imipenem to treat brain abscesses. Int J Antimicrob Agents 2010; 35:301–304.
Guilhaumou R, Benaboud S, Bennis Y, et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation-SFAR). Crit Care 2019; 23:104.
Tauber SC, Djukic M, Gossner J, et al. Sepsis-associated encephalopathy and septic encephalitis: an update. Expert Rev Anti Infect Ther 2020; 14:1–17.
Fachinformation Ampicillin Ratiopharm. Available at: https://www.ratiopharm.de/assets/products/de/label/Ampicillin-ratiopharm%20-%203.pdf?pzn=2036628 . [Accessed 1 January 2021].
Viladrich PF, Cabellos C, Pallares R, et al. High doses of cefotaxime in treatment of adult meningitis due to Streptococcus pneumoniae with decreased susceptibilities to broad-spectrum cephalosporins. Antimicrob Agents Chemother 1996; 40:218–220.
Cuzzolin L, Oggiano AM, Clemente MG, et al. Ceftriaxone-associated biliary pseudolithiasis in children: do we know enough? Fundam Clin Pharmacol 2021; 35:40–52.
Pechère JC, Delisle R. Open study of ceftazidime in serious infections due to multiply-resistant bacteria. J Antimicrob Chemother 1983; 12: (Suppl A): 181–188.
Payne LE, Gagnon DJ, Riker RR, et al. Cefepime-induced neurotoxicity: a systematic review. Crit Care 2017; 21:276.
Ullah S, Beer R, Fuhr U, et al. Brain exposure to piperacillin in acute hemorrhagic stroke patients assessed by cerebral microdialysis and population pharmacokinetics. Neurocrit Care 2020; 33:740–748.
Kerz T, von Loewenich FD, Roberts J, et al. Cerebrospinal fluid penetration of very high-dose meropenem: a case report. Ann Clin Microbiol Antimicrob 2018; 17:47.
Nau R, Kinzig-Schippers M, Sörgel F, et al. Kinetics of piperacillin and tazobactam in ventricular cerebrospinal fluid of hydrocephalic patients. Antimicrob Agents Chemother 1997; 41:987–991.
Foulds G, McBride TJ, Knirsch AK, et al. Penetration of sulbactam and ampicillin into cerebrospinal fluid of infants and young children with meningitis. Antimicrob Agents Chemother 1987; 31:1703–1705.
Stahl JP, Bru JP, Fredj G, et al. Penetration of sulbactam into the cerebrospinal fluid of patients with bacterial meningitis receiving ampicillin therapy. Rev Infect Dis 1986; 8: (Suppl 5): S612–S616.
Kim BN, Peleg AY, Lodise TP, et al. Management of meningitis due to antibiotic-resistant Acinetobacter species. Lancet Infect Dis 2009; 9:245–255.
Cawley MJ, Suh C, Lee S, Ackerman BH. Nontraditional dosing of ampicillin-sulbactam for multidrug-resistant Acinetobacter baumannii meningitis. Pharmacotherapy 2002; 22:527–532.
Licata A. Adverse drug reactions and organ damage: the liver. Eur J Intern Med 2016; 28:9–16.
Abdul-Aziz MH, McDonald C, McWhinney B, et al. Low flucloxacillin concentrations in a patient with central nervous system infection: the need for plasma and cerebrospinal fluid drug monitoring in the ICU. Ann Pharmacother 2014; 48:1380–1384.
Le Turnier P, Gregoire M, Deslandes G, et al. Should we reconsider cefazolin for treating staphylococcal meningitis? A retrospective analysis of cefazolin and cloxacillin cerebrospinal fluid levels in patients treated for staphylococcal meningitis. Clin Microbiol Infect 2020; 26:1415e1–1415e4.
Grégoire M, Gaborit B, Deschanvres C, et al. High-dosage cefazolin achieves sufficient cerebrospinal diffusion to treat an external ventricular drainage-related staphylococcus aureus ventriculitis. Antimicrob Agents Chemother 2019; 63:e01844.
Rindone JP, Mellen CK. Meta-analysis of trials comparing cefazolin to antistaphylococcal penicillins in the treatment of methicillin-sensitive Staphylococcus aureus bacteraemia. Br J Clin Pharmacol 2018; 84:1258–1266.
Kullar R, Chin JN, Edwards DJ, et al. Pharmacokinetics of single-dose daptomycin in patients with suspected or confirmed neurological infections. Antimicrob Agents Chemother 2011; 55:3505–3509.
Piva S, Di Paolo A, Galeotti L, et al. Daptomycin plasma and CSF levels in patients with healthcare-associated meningitis. Neurocrit Care 2019; 31:116–124.
Grandgirard D, Oberson K, Bühlmann A, et al. Attenuation of cerebrospinal fluid inflammation by the nonbacteriolytic antibiotic daptomycin versus that by ceftriaxone in experimental pneumococcal meningitis. Antimicrob Agents Chemother 2010; 54:1323–1326.
Nau R, Kinzig M, Dreyhaupt T, et al. Kinetics of ofloxacin and its metabolites in cerebrospinal fluid after a single intravenous infusion of 400 milligrams of ofloxacin. Antimicrob Agents Chemother 1994; 38:1849–1853.
Ruslami R, Ganiem AR, Dian S, et al. Intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis: an open-label, randomised controlled phase 2 trial. Lancet Infect Dis 2013; 13:27–35.
Kühnen E, Pfeifer G, Frenkel C. Penetration of fosfomycin into cerebrospinal fluid across noninflamed and inflamed meninges. Infection 1987; 15:422–424.
Pfausler B, Spiss H, Dittrich P, et al. Concentrations of fosfomycin in the cerebrospinal fluid of neurointensive care patients with ventriculostomy-associated ventriculitis. J Antimicrob Chemother 2004; 53:848–852.
Tsegka KG, Voulgaris GL, Kyriakidou M, Falagas ME. Intravenous fosfomycin for the treatment of patients with central nervous system infections: evaluation of the published evidence. Expert Rev Anti Infect Ther 2020; 18:657–668.
Dimopoulos G, Koulenti D, Parker SL, et al. Intravenous fosfomycin for the treatment of multidrug-resistant pathogens: what is the evidence on dosing regimens? Expert Rev Anti Infect Ther 2019; 17:201–210.
Beer R, Engelhardt KW, Pfausler B, et al. Pharmacokinetics of intravenous linezolid in cerebrospinal fluid and plasma in neurointensive care patients with staphylococcal ventriculitis associated with external ventricular drains. Antimicrob Agents Chemother 2007; 51:379–382.
Frasca D, Dahyot-Fizelier C, Adier C, et al. Metronidazole and hydroxymetronidazole central nervous system distribution: 1. microdialysis assessment of brain extracellular fluid concentrations in patients with acute brain injury. Antimicrob Agents Chemother 2014; 58:1019–1023.
Frasca D, Dahyot-Fizelier C, Adier C, et al. Metronidazole and hydroxymetronidazole central nervous system distribution: 2. cerebrospinal fluid concentration measurements in patients with external ventricular drain. Antimicrob Agents Chemother 2014; 58:1024–1027.
Nau R, Prange HW, Menck S, et al. Penetration of rifampicin into the cerebrospinal fluid of adults with uninflamed meninges. J Antimicrob Chemother 1992; 29:719–724.
Dian S, Yunivita V, Ganiem AR, et al. Double-blind, randomized, placebo-controlled phase II dose-finding study to evaluate high-dose rifampin for tuberculous meningitis. Antimicrob Agents Chemother 2018; 62:e01014–e1018.
Borg R, Dotevall L, Hagberg L, et al. Intravenous ceftriaxone compared with oral doxycycline for the treatment of Lyme neuroborreliosis. Scand J Infect Dis 2005; 37:449–454.
Abdallah M, Alsaleh H, Baradwan A, et al. Intraventricular tigecycline as a last resort therapy in a patient with difficult-to-treat healthcare-associated Acinetobacter baumannii ventriculitis: a case report. SN Compr Clin Med 2020; Aug 9:1–5. doi: 10.1007/s42399-020-00433-7.
doi: 10.1007/s42399-020-00433-7
Zhong L, Shi XZ, Su L, Liu ZF. Sequential intraventricular injection of tigecycline and polymyxin B in the treatment of intracranial Acinetobacter baumannii infection after trauma: a case report and review of the literature. Mil Med Res 2020; 7:23doi: 10.1186/s40779-020-00253-9.
doi: 10.1186/s40779-020-00253-9
Canessa V, Del Bono V, De Leo P, et al. Cotrimoxazole therapy of Toxoplasma gondii encephalitis in AIDS patients. Eur J Clin Microbiol Infect Dis 1992; 11:125–130.
Dunay IR, Gajurel K, Dhakal R, et al. Treatment of toxoplasmosis: historical perspective, animal models, and current clinical practice. Clin Microbiol Rev 2018; 31:e00057-17.
Blassmann U, Hope W, Roehr AC, et al. CSF penetration of vancomycin in critical care patients with proven or suspected ventriculitis: a prospective observational study. J Antimicrob Chemother 2019; 74:991–996.
Flannery AH, Bissell BD, Bastin MT, et al. Continuous versus intermittent infusion of vancomycin and the risk of acute kidney injury in critically ill adults: a systematic review and meta-analysis. Crit Care Med 2020; 48:912–918.
Mader MM, Czorlich P, König C, et al. Intrathecal penetration of meropenem and vancomycin administered by continuous infusion in patients suffering from ventriculitis-a retrospective analysis. Acta Neurochir (Wien) 2018; 160:2099–2105.
Yahav D, Giske CG, Grāmatniece A, et al. New β-lactam-β-lactamase inhibitor combinations. Clin Microbiol Rev 2020; 34:e00115–20.
Dinh A, Wyplosz B, Kernéis S, et al. Use of ceftolozane/tazobactam as salvage therapy for infections due to extensively drug-resistant Pseudomonas aeruginosa . Int J Antimicrob Agents 2017; 49:782–783.
Meschiari M, Franconi I, Bacca E, et al. Ceftazidime/avibactam and ceftolozane/tazobactam for the treatment of extensively drug-resistant Pseudomonas aeruginosa postneurosurgical infections: three cases and a review of the literature. Infection 2020; Oct 19;1–5. doi: 10.1007/s15010-020-01539-9.
doi: 10.1007/s15010-020-01539-9
Winans SA, Guerrero-Wooley RL, Park SH, et al. Continuous infusion of ceftolozane-tazobactam resulted in high cerebrospinal fluid concentrations of ceftolozane in a patient with multidrug-resistant Pseudomonas aeruginosa meningitis. Infection 2020; Aug 29. doi: 10.1007/s15010-020-01510-8.
doi: 10.1007/s15010-020-01510-8
Karvouniaris M, Pontikis K, Nitsotolis T, Poulakou G. New perspectives in the antibiotic treatment of mechanically ventilated patients with infections from Gram-negatives. Expert Rev Anti Infect Ther 2020; Dec 21;1–20. doi: 10.1080/14787210.2021.1859369.
doi: 10.1080/14787210.2021.1859369
Mattie H. Clinical pharmacokinetics of aztreonam. An update. Clin Pharmacokinet 1994; 26:99–106.
Duma RJ, Berry AJ, Smith SM, et al. Penetration of aztreonam into cerebrospinal fluid of patients with and without inflamed meninges. Antimicrob Agents Chemother 1984; 26:730–733.
Yasmin M, Hanrahan J, Marshall S, et al. Using therapeutic drug monitoring to treat KPC-producing Klebsiella pneumoniae central nervous system infection with ceftazidime/avibactam. Open Forum Infect Dis 2020; 7:ofaa349.
Samuel S, Edwards NJ, Rojas LJ, et al. Ceftazidime-avibactam for the treatment of postneurosurgical meningitis caused by a Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae Open Forum Infectious Diseases 2016; 3: (Suppl 1):1182.
Petraitis V, Petraitiene R, Maung BBW, et al. Pharmacokinetics and comprehensive analysis of the tissue distribution of eravacycline in rabbits. Antimicrob Agents Chemother 2018; 62:e00275-18.