Prediction of disease flare by biomarkers after discontinuing biologics in patients with rheumatoid arthritis achieving stringent remission.
Aged
Antirheumatic Agents
/ therapeutic use
Arthritis, Rheumatoid
/ drug therapy
Biological Products
/ therapeutic use
Biomarkers
/ analysis
Female
Humans
Male
Middle Aged
Remission Induction
Severity of Illness Index
Symptom Flare Up
Treatment Outcome
Withholding Treatment
/ statistics & numerical data
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
25 03 2021
25 03 2021
Historique:
received:
13
11
2020
accepted:
08
03
2021
entrez:
26
3
2021
pubmed:
27
3
2021
medline:
21
10
2021
Statut:
epublish
Résumé
To elucidate the disease-flare process in rheumatoid arthritis (RA) after discontinuing biological disease-modifying antirheumatic drugs (bDMARDs), we first focused on RA-flare prediction after achieving stringent remission criteria. Patients with RA who maintained a simplified disease activity index ≤ 3.3 for ≥ 3 months during November 2014-January 2018 in our medical centre in Tokyo, Japan, were eligible. The primary endpoint was flare (disease activity score 28-erythrocyte sedimentation rate ≥ 3.2 with increase from baseline > 0.6) within 2 years after bDMARD discontinuation. Comprehensive clinical assessments, ultrasonographic evaluation of 40 joints, and blood sampling for 12 biomarkers were performed every 2-3 months for 2 years unless patients experienced flare. Flare-positive and flare-negative patients were compared using univariate and Kaplan-Meier analyses. Thirty-six patients (80.6% female, median disease duration, 5.2 years; median treatment period with discontinued bDMARD, 2 years; median remission duration, 18 months) were enrolled. Twenty patients (55.6%) experienced RA flare 43-651 (median, 115) days after the first skipped date of bDMARDs. Two patients who withdrew without disease flare were excluded from the comparison. Clinical and ultrasonographic evaluations did not show significant between-group differences; Kaplan-Meier analysis showed that higher baseline soluble tumour necrosis factor receptor 1 (sTNFR1) concentration impacted subsequent disease flare (p = 0.0041); higher baseline interleukin (IL)-2 concentration was exclusively beneficial to patients with lower sTNFR1 (p = 0.0058), resulting in remission maintenance in 83.3% of patients with lower sTNFR1 and higher IL-2. We demonstrated the usefulness of combined biomarker evaluation for predicting sustained remission after bDMARD discontinuation in RA.
Identifiants
pubmed: 33767314
doi: 10.1038/s41598-021-86335-7
pii: 10.1038/s41598-021-86335-7
pmc: PMC7994312
doi:
Substances chimiques
Antirheumatic Agents
0
Biological Products
0
Biomarkers
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
6865Références
Semin Arthritis Rheum. 2017 Dec;47(3):310-314
pubmed: 28532573
Ann Rheum Dis. 2020 Jan;79(1):94-102
pubmed: 31630117
RMD Open. 2016 Feb 18;2(1):e000189
pubmed: 26925252
JAMA. 2019 Feb 5;321(5):457-458
pubmed: 30721278
Ann Rheum Dis. 2016 Aug;75(8):1428-37
pubmed: 27261493
J Autoimmun. 2019 Dec;105:102298
pubmed: 31280933
Ann Rheum Dis. 2001 Jul;60(7):641-9
pubmed: 11406516
Ann Rheum Dis. 2016 Jan;75(1):52-8
pubmed: 25873634
Arthritis Rheum. 2010 Sep;62(9):2569-81
pubmed: 20872595
Ann Rheum Dis. 2015 Feb;74(2):389-95
pubmed: 24288014
Arthritis Res Ther. 2017 Jul 4;19(1):155
pubmed: 28676129
Ann Rheum Dis. 2014 May;73(5):945-7
pubmed: 24336338
J Rheumatol. 2005 Dec;32(12):2485-7
pubmed: 16331793
Ann Rheum Dis. 2010 Jul;69(7):1286-91
pubmed: 20360136
Mod Rheumatol. 2014 Jan;24(1):17-25
pubmed: 24261754
Ann Rheum Dis. 2013 Nov;72(11):1800-5
pubmed: 23178206
Ann Agric Environ Med. 2015;22(2):320-4
pubmed: 26094531
Rheumatology (Oxford). 2003 Feb;42(2):244-57
pubmed: 12595618
Ann Rheum Dis. 2016 Jan;75(1):45-51
pubmed: 25660991
Ann Rheum Dis. 2013 Jun;72(6):844-50
pubmed: 22739990
Ann Rheum Dis. 2019 Feb;78(2):209-217
pubmed: 30472651
Nat Commun. 2018 Jul 16;9(1):2755
pubmed: 30013029
Mod Rheumatol. 2016 Sep;26(5):651-61
pubmed: 26698929
J Biol Chem. 2008 May 23;283(21):14177-81
pubmed: 18385130
Semin Arthritis Rheum. 2020 Apr;50(2):276-284
pubmed: 31590930
Rheumatology (Oxford). 2019 Feb 1;58(2):227-236
pubmed: 29538755
Ann Rheum Dis. 2017 Aug;76(8):1348-1356
pubmed: 28153828
Ann Rheum Dis. 2011 Feb;70(2):315-9
pubmed: 21068104
J Pharm Biomed Anal. 2012 Nov;70:415-24
pubmed: 22749821
Rheumatology (Oxford). 2015 Apr;54(4):683-91
pubmed: 25257039
Ann Rheum Dis. 2018 Sep;77(9):1268-1275
pubmed: 29853455
Mucosal Immunol. 2019 Sep;12(5):1104-1117
pubmed: 31285535
Ann Rheum Dis. 2016 Jan;75(1):59-67
pubmed: 26103979
Arthritis Res Ther. 2019 Jul 5;21(1):164
pubmed: 31277720
Nat Rev Rheumatol. 2018 Jan;14(1):32-41
pubmed: 29118439
PLoS One. 2015 Dec 04;10(12):e0142976
pubmed: 26636339
Ann Rheum Dis. 2011 Mar;70(3):404-13
pubmed: 21292833
Ann Rheum Dis. 2017 Dec;76(12):1974-1979
pubmed: 28814430
Lancet. 2014 Jan 25;383(9914):321-32
pubmed: 24168956
Mod Rheumatol. 2014 Jul;24(4):561-6
pubmed: 24252035
Arthritis Rheum. 1995 Jan;38(1):44-8
pubmed: 7818570
Ann Rheum Dis. 2016 Sep;75(9):1637-44
pubmed: 26483255
Ann Rheum Dis. 2020 Jun;79(6):685-699
pubmed: 31969328
Mol Med Rep. 2013 Mar;7(3):775-80
pubmed: 23291902
Arthritis Rheumatol. 2017 Feb;69(2):301-308
pubmed: 27696778
Ann Rheum Dis. 2015 Jan;74(1):19-26
pubmed: 25367713
Mod Rheumatol. 2019 Jan;29(1):31-40
pubmed: 29718746