Mapping gene transcription and neurocognition across human neocortex.
Journal
Nature human behaviour
ISSN: 2397-3374
Titre abrégé: Nat Hum Behav
Pays: England
ID NLM: 101697750
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
received:
17
07
2020
accepted:
18
02
2021
pubmed:
27
3
2021
medline:
7
10
2021
entrez:
26
3
2021
Statut:
ppublish
Résumé
Regulation of gene expression drives protein interactions that govern synaptic wiring and neuronal activity. The resulting coordinated activity among neuronal populations supports complex psychological processes, yet how gene expression shapes cognition and emotion remains unknown. Here, we directly bridge the microscale and macroscale by mapping gene expression patterns to functional activation patterns across the cortical sheet. Applying unsupervised learning to the Allen Human Brain Atlas and Neurosynth databases, we identify a ventromedial-dorsolateral gradient of gene assemblies that separate affective and perceptual domains. This topographic molecular-psychological signature reflects the hierarchical organization of the neocortex, including systematic variations in cell type, myeloarchitecture, laminar differentiation and intrinsic network affiliation. In addition, this molecular-psychological signature strengthens over neurodevelopment and can be replicated in two independent repositories. Collectively, our results reveal spatially covarying transcriptomic and cognitive architectures, highlighting the influence that molecular mechanisms exert on psychological processes.
Identifiants
pubmed: 33767429
doi: 10.1038/s41562-021-01082-z
pii: 10.1038/s41562-021-01082-z
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1240-1250Subventions
Organisme : NIMH NIH HHS
ID : T32 MH019112
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG068563
Pays : United States
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Betzel, R. F. & Bassett, D. S. Multi-scale brain networks. NeuroImage 160, 73–83 (2017).
pubmed: 27845257
doi: 10.1016/j.neuroimage.2016.11.006
Tripathy, S. J. et al. Transcriptomic correlates of neuron electrophysiological diversity. PLoS Comput. Biol. 13, e1005814 (2017).
pubmed: 29069078
pmcid: 5673240
doi: 10.1371/journal.pcbi.1005814
Cadwell, C. R. et al. Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat. Biotech. 34, 199–203 (2016).
doi: 10.1038/nbt.3445
Lee, K. F. H., Soares, C., Thivierge, J.-P. & Béïque, J.-C. Correlated synaptic inputs drive dendritic calcium amplification and cooperative plasticity during clustered synapse development. Neuron 89, 784–799 (2016).
pubmed: 26853305
doi: 10.1016/j.neuron.2016.01.012
Frémaux, N. & Gerstner, W. Neuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules. Front. Neural Circuits 9, 85 (2016).
pubmed: 26834568
pmcid: 4717313
doi: 10.3389/fncir.2015.00085
Blankenship, A. G. & Feller, M. B. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat. Rev. Neurosci. 11, 18–29 (2010).
pubmed: 19953103
doi: 10.1038/nrn2759
Calhoon, G. G. & Tye, K. M. Resolving the neural circuits of anxiety. Nat. Neurosci. 18, 1394–1404 (2015).
pubmed: 26404714
pmcid: 7575249
doi: 10.1038/nn.4101
Suárez, L. E., Markello, R. D., Betzel, R. F. & Misic, B.Linking structure and function in macroscale brain networks. Trends Cogn. Sci. 24, 302–315 (2020).
pubmed: 32160567
doi: 10.1016/j.tics.2020.01.008
Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).
pubmed: 21653723
doi: 10.1152/jn.00338.2011
Damoiseaux, J. S. et al. Consistent resting-state networks across healthy subjects. Proc. Natl Acad. Sci. USA 103, 13848–13853 (2006).
pubmed: 16945915
pmcid: 1564249
doi: 10.1073/pnas.0601417103
Richiardi, J. et al. Correlated gene expression supports synchronous activity in brain networks. Science 348, 1241–1244 (2015).
pubmed: 26068849
pmcid: 4829082
doi: 10.1126/science.1255905
Fulcher, B. D. & Fornito, A. A transcriptional signature of hub connectivity in the mouse connectome. Proc. Natl Acad. Sci. USA 113, 1435–1440 (2016).
pubmed: 26772314
pmcid: 4747775
doi: 10.1073/pnas.1513302113
Fulcher, B. D., Murray, J. D., Zerbi, V. & Wang, X.-J. Multimodal gradients across mouse cortex. Proc. Natl Acad. Sci. USA 116, 4689–4695 (2019).
pubmed: 30782826
pmcid: 6410879
doi: 10.1073/pnas.1814144116
Betzel, R. F. et al. Structural, geometric and genetic factors predict interregional brain connectivity patterns probed by electrocorticography. Nat. Biomed. Eng. 3, 902–916 (2019).
pubmed: 31133741
doi: 10.1038/s41551-019-0404-5
Vértes, P. E. et al. Gene transcription profiles associated with intra-modular and inter-modular hubs in human fMRI networks. Phil. Trans. R. Soc. Lond. B Biol. Sci. 371, 735–769 (2016).
doi: 10.1098/rstb.2015.0362
Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D.Large-scale automated synthesis of human functional neuroimaging data. Nat. Meth. 8, 665–670 (2011).
doi: 10.1038/nmeth.1635
Fox, P. T. & Lancaster, J. L. Mapping context and content: the BrainMap model. Nat. Rev. Neurosci. 3, 319–321 (2002).
pubmed: 11967563
doi: 10.1038/nrn789
Gorgolewski, K. J. et al. NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain. Front. Neuroinform. 9, 8 (2015).
pubmed: 25914639
pmcid: 4392315
doi: 10.3389/fninf.2015.00008
Dockès, J. et al. NeuroQuery, comprehensive meta-analysis of human brain mapping. eLife 9, e53385 (2020).
pubmed: 32129761
pmcid: 7164961
doi: 10.7554/eLife.53385
Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).
pubmed: 22996553
pmcid: 4243026
doi: 10.1038/nature11405
Hawrylycz, M. et al. Canonical genetic signatures of the adult human brain. Nat. Neurosci. 18, 1832–1844 (2015).
pubmed: 26571460
pmcid: 4700510
doi: 10.1038/nn.4171
Miller, J. A. et al. Transcriptional landscape of the prenatal human brain. Nature 508, 199–206 (2014).
pubmed: 24695229
pmcid: 4105188
doi: 10.1038/nature13185
Seidlitz, J. et al. Transcriptomic and cellular decoding of regional brain vulnerability to neurodevelopmental disorders. Nat. Commun. 11, 3358 (2020).
pubmed: 32620757
pmcid: 7335069
doi: 10.1038/s41467-020-17051-5
Whitaker, K. J. et al. Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proc. Natl Acad. Sci. USA 113, 9105–9110 (2016).
pubmed: 27457931
pmcid: 4987797
doi: 10.1073/pnas.1601745113
Váša, F. et al. Conservative and disruptive modes of adolescent change in human brain functional connectivity. Proc. Natl Acad. Sci. USA 117, 3248–3253 (2020).
pubmed: 31992644
pmcid: 7022153
doi: 10.1073/pnas.1906144117
Burt, J. B. et al. Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat. Neurosci. 21, 1251–1259 (2018).
pubmed: 30082915
pmcid: 6119093
doi: 10.1038/s41593-018-0195-0
Arnatkevičiūtė, A., Fulcher, B. D. & Fornito, A. A practical guide to linking brain-wide gene expression and neuroimaging data. NeuroImage 189, 353–367 (2019).
pubmed: 30648605
doi: 10.1016/j.neuroimage.2019.01.011
Fox, A. S., Chang, L. J., Gorgolewski, K. J. & Yarkoni, T. Bridging psychology and genetics using large-scale spatial analysis of neuroimaging and neurogenetic data. Preprint at bioRxiv https://doi.org/10.1101/012310 (2014).
Poldrack, R. A. et al. The cognitive atlas: toward a knowledge foundation for cognitive neuroscience. Front. Neuroinform. 5, 17 (2011).
pubmed: 21922006
pmcid: 3167196
doi: 10.3389/fninf.2011.00017
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980 (2006).
pubmed: 16530430
doi: 10.1016/j.neuroimage.2006.01.021
Cammoun, L. et al. Mapping the human connectome at multiple scales with diffusion spectrum MRI. J. Neurosci. Methods 203, 386–397 (2012).
pubmed: 22001222
doi: 10.1016/j.jneumeth.2011.09.031
McIntosh, A. R., Bookstein, F. L., Haxby, J. V. & Grady, C. L. Spatial pattern analysis of functional brain images using partial least squares. NeuroImage 3, 143–157 (1996).
pubmed: 9345485
doi: 10.1006/nimg.1996.0016
Krishnan, A., Williams, L. J., McIntosh, A. R. & Abdi, H. Partial least squares (PLS) methods for neuroimaging: a tutorial and review. NeuroImage 56, 455–475 (2011).
pubmed: 20656037
doi: 10.1016/j.neuroimage.2010.07.034
McIntosh, A. R. & Mišić, B. Multivariate statistical analyses for neuroimaging data. Annu. Rev. Psychol. 64, 499–525 (2013).
pubmed: 22804773
doi: 10.1146/annurev-psych-113011-143804
Vázquez-Rodríguez, B. et al. Gradients of structure–function tethering across neocortex. Proc. Natl Acad. Sci. USA 116, 21219–21227 (2019).
pubmed: 31570622
pmcid: 6800358
doi: 10.1073/pnas.1903403116
Markello, R. & Misic, B. Comparing spatially-constrained null models for parcellated brain maps. Preprint at bioRxiv https://doi.org/10.1101/2020.08.13.249797 (2020).
Burt, J. B., Helmer, M., Shinn, M., Anticevic, A. & Murray, J. D.Generative modeling of brain maps with spatial autocorrelation. NeuroImage 220, 117038 (2020).
pubmed: 32585343
doi: 10.1016/j.neuroimage.2020.117038
Fulcher, B. D, Arnatkevičiūtė, A. & Fornito, A. Overcoming bias in gene-set enrichment analyses of brain-wide transcriptomic data. Preprint at bioRxiv https://doi.org/10.1101/2020.04.24.058958 (2020).
Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016).
pubmed: 26687838
doi: 10.1016/j.neuron.2015.11.013
Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).
pubmed: 29227469
doi: 10.1038/nbt.4038
Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).
pubmed: 28846088
pmcid: 5623139
doi: 10.1038/nmeth.4407
Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl Acad. Sci. USA 112, 7285–7290 (2015).
pubmed: 26060301
pmcid: 4466750
doi: 10.1073/pnas.1507125112
Li, M. et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362, eaat7615 (2018).
pubmed: 30545854
pmcid: 6413317
doi: 10.1126/science.aat7615
McKenzie, A. T. et al. Brain cell type specific gene expression and co-expression network architectures. Sci. Rep. 8, 8868 (2018).
pubmed: 29892006
pmcid: 5995803
doi: 10.1038/s41598-018-27293-5
Huntenburg, J. M., Bazin, P.-L. & Margulies, D. S. Large-scale gradients in human cortical organization. Trends Cogn. Sci. 22, 21–31 (2018).
pubmed: 29203085
doi: 10.1016/j.tics.2017.11.002
Wang, X.-J.Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nat. Rev. Neurosci. 21, 169–178 (2020).
pubmed: 32029928
pmcid: 7334830
doi: 10.1038/s41583-020-0262-x
Glasser, M. F. & Van Essen, D. C. Mapping human cortical areas in vivo based on myelin content as revealed by T1-and T2-weighted MRI. J. Neurosci. 31, 11597–11616 (2011).
pubmed: 21832190
pmcid: 3167149
doi: 10.1523/JNEUROSCI.2180-11.2011
Wagstyl, K., Ronan, L., Goodyer, I. M. & Fletcher, P. C. Cortical thickness gradients in structural hierarchies. NeuroImage 111, 241–250 (2015).
pubmed: 25725468
doi: 10.1016/j.neuroimage.2015.02.036
Huntenburg, J. M. et al. A systematic relationship between functional connectivity and intracortical myelin in the human cerebral cortex. Cereb. Cortex 27, 981–997 (2017).
pubmed: 28184415
pmcid: 5390400
doi: 10.1093/cercor/bhx030
Jones, E. G. & Powell, T. P. S. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93, 793–820 (1970).
pubmed: 4992433
doi: 10.1093/brain/93.4.793
Mesulam, M.-M. From sensation to cognition. Brain 121, 1013–1052 (1998).
pubmed: 9648540
doi: 10.1093/brain/121.6.1013
Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).
pubmed: 27791099
pmcid: 5098630
doi: 10.1073/pnas.1608282113
Coifman, R. R. et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc. Natl Acad. Sci. USA 102, 7426–7431 (2005).
pubmed: 15899970
pmcid: 1140422
doi: 10.1073/pnas.0500334102
Van Der Maaten, L., Postma, E. & Van den Herik, J. Dimensionality reduction: a comparative. J. Mach. Learn. Res. 10, 66–71 (2009).
Von Economo, C. & Koskinas, G. N. Die Cytoarchitektonik der Hirnrinde des Erwachsenen Menschen (Springer, 1925).
Mesulam, M.-M. Principles of Behavioral and Cognitive Neurology 2nd edn (Oxford Univ. Press, 2000).
Paquola, C. et al. Microstructural and functional gradients are increasingly dissociated in transmodal cortices. PLoS Biol. 17, e3000284 (2019).
pubmed: 31107870
pmcid: 6544318
doi: 10.1371/journal.pbio.3000284
Fox, P. T. et al. BrainMap taxonomy of experimental design: description and evaluation. Hum. Brain Mapp. 25, 185–198 (2005).
pubmed: 15846810
pmcid: 6871758
doi: 10.1002/hbm.20141
Vanasse, T. J. et al. BrainMap VBM: an environment for structural meta-analysis. Hum. Brain Mapp. 39, 3308–3325 (2018).
pubmed: 29717540
pmcid: 6866579
doi: 10.1002/hbm.24078
Laird, A. R., Lancaster, J. J. & Fox, P. T. BrainMap. Neuroinformatics 3, 65–77 (2005).
pubmed: 15897617
doi: 10.1385/NI:3:1:065
Alexander-Bloch, A. F. et al. Imaging local genetic influences on cortical folding. Proc. Natl Acad. Sci. USA 117, 7430–7436 (2020).
pubmed: 32170019
pmcid: 7132284
doi: 10.1073/pnas.1912064117
Forest, M. et al. Gene networks show associations with seed region connectivity. Hum. Brain Mapp. 38, 3126–3140 (2017).
pubmed: 28321948
pmcid: 6866840
doi: 10.1002/hbm.23579
Krienen, F. M., Yeo, B. T. T., Ge, T., Buckner, R. L. & Sherwood, C. C. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain. Proc. Natl Acad. Sci. USA 113, E469–E478 (2016).
pubmed: 26739559
pmcid: 4739529
doi: 10.1073/pnas.1510903113
Buckner, R. L. & Krienen, F. M. The evolution of distributed association networks in the human brain. Trends Cogn. Sci. 17, 648–665 (2013).
pubmed: 24210963
doi: 10.1016/j.tics.2013.09.017
Mueller, S. et al. Individual variability in functional connectivity architecture of the human brain. Neuron 77, 586–595 (2013).
pubmed: 23395382
pmcid: 3746075
doi: 10.1016/j.neuron.2012.12.028
Jo, Y., Faskowitz, J., Esfahlani, F. Z., Sporns, O. & Betzel, R. F. Subject identification using edge-centric functional connectivity. Preprint at bioRxiv https://doi.org/10.1101/2020.09.13.291898 (2020).
Vogel, J. W. et al. A molecular gradient along the longitudinal axis of the human hippocampus informs large-scale behavioral systems. Nat. Commun. 11, 960 (2020).
pubmed: 32075960
pmcid: 7031290
doi: 10.1038/s41467-020-14518-3
Mišić, B. & Sporns, O. From regions to connections and networks: new bridges between brain and behavior. Curr. Opin. Neurobiol. 40, 1–7 (2016).
pubmed: 27209150
pmcid: 5056800
doi: 10.1016/j.conb.2016.05.003
Kirschner, M. et al. Latent clinical-anatomical dimensions of schizophrenia. Schizophr. Bull. 46, 1426–1438 (2020).
pubmed: 32744604
doi: 10.1093/schbul/sbaa097
pmcid: 8496914
Amor, S., Puentes, F., Baker, D. & Van Der Valk, P. Inflammation in neurodegenerative diseases. Immunology 129, 154–169 (2010).
pubmed: 20561356
pmcid: 2814458
doi: 10.1111/j.1365-2567.2009.03225.x
Shafiei, G. et al. Spatial patterning of tissue volume loss in schizophrenia reflects brain network architecture. Biol. Psychiatry 87, 727–735 (2020).
pubmed: 31837746
doi: 10.1016/j.biopsych.2019.09.031
Bush, G., Luu, P. & Posner, M. I. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 4, 215–222 (2000).
pubmed: 10827444
doi: 10.1016/S1364-6613(00)01483-2
Goodkind, M. et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015).
pubmed: 25651064
pmcid: 4791058
doi: 10.1001/jamapsychiatry.2014.2206
Patania, A. et al. Topological gene expression networks recapitulate brain anatomy and function. Network Neurosci. 3, 744–762 (2019).
doi: 10.1162/netn_a_00094
Miller, J. A. et al. Improving reliability and absolute quantification of human brain microarray data by filtering and scaling probes using RNA-seq. BMC Genomics 15, 154 (2014).
pubmed: 24564186
pmcid: 4007560
doi: 10.1186/1471-2164-15-154
Alexander-Bloch, A. F. et al. On testing for spatial correspondence between maps of human brain structure and function. NeuroImage 178, 540–551 (2018).
pubmed: 29860082
doi: 10.1016/j.neuroimage.2018.05.070
Eckart, C. & Young, G. The approximation of one matrix by another of lower rank. Psychometrika 1, 211–218 (1936).
doi: 10.1007/BF02288367
Kovacevic, N., Abdi, H., Beaton, D. & McIntosh, A. R. in New Perspectives in Partial Least Squares and Related Methods 159–170 (Springer, 2013).
Helmer, M. et al. On stability of canonical correlation analysis and partial least squares with application to brain–behavior associations. Preprint at bioRxiv https://doi.org/10.1101/2020.08.25.265546 (2020).
Hotelling, H. The most predictable criterion. J. Educ. Psychol. 26, 139–142 (1935).
doi: 10.1037/h0058165
McIntosh, A. R. & Lobaugh, N. J. Partial least squares analysis of neuroimaging data: applications and advances. NeuroImage 23, S250–S263 (2004).
pubmed: 15501095
doi: 10.1016/j.neuroimage.2004.07.020
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517
pmcid: 1239896
doi: 10.1073/pnas.0506580102
Essen, D. C. Van et al. The WU-Minn Human Connectome Project: an overview. NeuroImage 80, 62–79 (2013).
pubmed: 23684880
doi: 10.1016/j.neuroimage.2013.05.041
Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105–124 (2013).
pubmed: 23668970
doi: 10.1016/j.neuroimage.2013.04.127
Werling, D. M. et al. Whole-genome and RNA sequencing reveal variation and transcriptomic coordination in the developing human prefrontal cortex. Cell Rep. 31, 107489 (2020).
pubmed: 32268104
pmcid: 7295160
doi: 10.1016/j.celrep.2020.03.053