Mapping gene transcription and neurocognition across human neocortex.


Journal

Nature human behaviour
ISSN: 2397-3374
Titre abrégé: Nat Hum Behav
Pays: England
ID NLM: 101697750

Informations de publication

Date de publication:
09 2021
Historique:
received: 17 07 2020
accepted: 18 02 2021
pubmed: 27 3 2021
medline: 7 10 2021
entrez: 26 3 2021
Statut: ppublish

Résumé

Regulation of gene expression drives protein interactions that govern synaptic wiring and neuronal activity. The resulting coordinated activity among neuronal populations supports complex psychological processes, yet how gene expression shapes cognition and emotion remains unknown. Here, we directly bridge the microscale and macroscale by mapping gene expression patterns to functional activation patterns across the cortical sheet. Applying unsupervised learning to the Allen Human Brain Atlas and Neurosynth databases, we identify a ventromedial-dorsolateral gradient of gene assemblies that separate affective and perceptual domains. This topographic molecular-psychological signature reflects the hierarchical organization of the neocortex, including systematic variations in cell type, myeloarchitecture, laminar differentiation and intrinsic network affiliation. In addition, this molecular-psychological signature strengthens over neurodevelopment and can be replicated in two independent repositories. Collectively, our results reveal spatially covarying transcriptomic and cognitive architectures, highlighting the influence that molecular mechanisms exert on psychological processes.

Identifiants

pubmed: 33767429
doi: 10.1038/s41562-021-01082-z
pii: 10.1038/s41562-021-01082-z
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1240-1250

Subventions

Organisme : NIMH NIH HHS
ID : T32 MH019112
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG068563
Pays : United States

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Betzel, R. F. & Bassett, D. S. Multi-scale brain networks. NeuroImage 160, 73–83 (2017).
pubmed: 27845257 doi: 10.1016/j.neuroimage.2016.11.006
Tripathy, S. J. et al. Transcriptomic correlates of neuron electrophysiological diversity. PLoS Comput. Biol. 13, e1005814 (2017).
pubmed: 29069078 pmcid: 5673240 doi: 10.1371/journal.pcbi.1005814
Cadwell, C. R. et al. Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat. Biotech. 34, 199–203 (2016).
doi: 10.1038/nbt.3445
Lee, K. F. H., Soares, C., Thivierge, J.-P. & Béïque, J.-C. Correlated synaptic inputs drive dendritic calcium amplification and cooperative plasticity during clustered synapse development. Neuron 89, 784–799 (2016).
pubmed: 26853305 doi: 10.1016/j.neuron.2016.01.012
Frémaux, N. & Gerstner, W. Neuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules. Front. Neural Circuits 9, 85 (2016).
pubmed: 26834568 pmcid: 4717313 doi: 10.3389/fncir.2015.00085
Blankenship, A. G. & Feller, M. B. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat. Rev. Neurosci. 11, 18–29 (2010).
pubmed: 19953103 doi: 10.1038/nrn2759
Calhoon, G. G. & Tye, K. M. Resolving the neural circuits of anxiety. Nat. Neurosci. 18, 1394–1404 (2015).
pubmed: 26404714 pmcid: 7575249 doi: 10.1038/nn.4101
Suárez, L. E., Markello, R. D., Betzel, R. F. & Misic, B.Linking structure and function in macroscale brain networks. Trends Cogn. Sci. 24, 302–315 (2020).
pubmed: 32160567 doi: 10.1016/j.tics.2020.01.008
Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).
pubmed: 21653723 doi: 10.1152/jn.00338.2011
Damoiseaux, J. S. et al. Consistent resting-state networks across healthy subjects. Proc. Natl Acad. Sci. USA 103, 13848–13853 (2006).
pubmed: 16945915 pmcid: 1564249 doi: 10.1073/pnas.0601417103
Richiardi, J. et al. Correlated gene expression supports synchronous activity in brain networks. Science 348, 1241–1244 (2015).
pubmed: 26068849 pmcid: 4829082 doi: 10.1126/science.1255905
Fulcher, B. D. & Fornito, A. A transcriptional signature of hub connectivity in the mouse connectome. Proc. Natl Acad. Sci. USA 113, 1435–1440 (2016).
pubmed: 26772314 pmcid: 4747775 doi: 10.1073/pnas.1513302113
Fulcher, B. D., Murray, J. D., Zerbi, V. & Wang, X.-J. Multimodal gradients across mouse cortex. Proc. Natl Acad. Sci. USA 116, 4689–4695 (2019).
pubmed: 30782826 pmcid: 6410879 doi: 10.1073/pnas.1814144116
Betzel, R. F. et al. Structural, geometric and genetic factors predict interregional brain connectivity patterns probed by electrocorticography. Nat. Biomed. Eng. 3, 902–916 (2019).
pubmed: 31133741 doi: 10.1038/s41551-019-0404-5
Vértes, P. E. et al. Gene transcription profiles associated with intra-modular and inter-modular hubs in human fMRI networks. Phil. Trans. R. Soc. Lond. B Biol. Sci. 371, 735–769 (2016).
doi: 10.1098/rstb.2015.0362
Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D.Large-scale automated synthesis of human functional neuroimaging data. Nat. Meth. 8, 665–670 (2011).
doi: 10.1038/nmeth.1635
Fox, P. T. & Lancaster, J. L. Mapping context and content: the BrainMap model. Nat. Rev. Neurosci. 3, 319–321 (2002).
pubmed: 11967563 doi: 10.1038/nrn789
Gorgolewski, K. J. et al. NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain. Front. Neuroinform. 9, 8 (2015).
pubmed: 25914639 pmcid: 4392315 doi: 10.3389/fninf.2015.00008
Dockès, J. et al. NeuroQuery, comprehensive meta-analysis of human brain mapping. eLife 9, e53385 (2020).
pubmed: 32129761 pmcid: 7164961 doi: 10.7554/eLife.53385
Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).
pubmed: 22996553 pmcid: 4243026 doi: 10.1038/nature11405
Hawrylycz, M. et al. Canonical genetic signatures of the adult human brain. Nat. Neurosci. 18, 1832–1844 (2015).
pubmed: 26571460 pmcid: 4700510 doi: 10.1038/nn.4171
Miller, J. A. et al. Transcriptional landscape of the prenatal human brain. Nature 508, 199–206 (2014).
pubmed: 24695229 pmcid: 4105188 doi: 10.1038/nature13185
Seidlitz, J. et al. Transcriptomic and cellular decoding of regional brain vulnerability to neurodevelopmental disorders. Nat. Commun. 11, 3358 (2020).
pubmed: 32620757 pmcid: 7335069 doi: 10.1038/s41467-020-17051-5
Whitaker, K. J. et al. Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proc. Natl Acad. Sci. USA 113, 9105–9110 (2016).
pubmed: 27457931 pmcid: 4987797 doi: 10.1073/pnas.1601745113
Váša, F. et al. Conservative and disruptive modes of adolescent change in human brain functional connectivity. Proc. Natl Acad. Sci. USA 117, 3248–3253 (2020).
pubmed: 31992644 pmcid: 7022153 doi: 10.1073/pnas.1906144117
Burt, J. B. et al. Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat. Neurosci. 21, 1251–1259 (2018).
pubmed: 30082915 pmcid: 6119093 doi: 10.1038/s41593-018-0195-0
Arnatkevičiūtė, A., Fulcher, B. D. & Fornito, A. A practical guide to linking brain-wide gene expression and neuroimaging data. NeuroImage 189, 353–367 (2019).
pubmed: 30648605 doi: 10.1016/j.neuroimage.2019.01.011
Fox, A. S., Chang, L. J., Gorgolewski, K. J. & Yarkoni, T. Bridging psychology and genetics using large-scale spatial analysis of neuroimaging and neurogenetic data. Preprint at bioRxiv https://doi.org/10.1101/012310 (2014).
Poldrack, R. A. et al. The cognitive atlas: toward a knowledge foundation for cognitive neuroscience. Front. Neuroinform. 5, 17 (2011).
pubmed: 21922006 pmcid: 3167196 doi: 10.3389/fninf.2011.00017
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980 (2006).
pubmed: 16530430 doi: 10.1016/j.neuroimage.2006.01.021
Cammoun, L. et al. Mapping the human connectome at multiple scales with diffusion spectrum MRI. J. Neurosci. Methods 203, 386–397 (2012).
pubmed: 22001222 doi: 10.1016/j.jneumeth.2011.09.031
McIntosh, A. R., Bookstein, F. L., Haxby, J. V. & Grady, C. L. Spatial pattern analysis of functional brain images using partial least squares. NeuroImage 3, 143–157 (1996).
pubmed: 9345485 doi: 10.1006/nimg.1996.0016
Krishnan, A., Williams, L. J., McIntosh, A. R. & Abdi, H. Partial least squares (PLS) methods for neuroimaging: a tutorial and review. NeuroImage 56, 455–475 (2011).
pubmed: 20656037 doi: 10.1016/j.neuroimage.2010.07.034
McIntosh, A. R. & Mišić, B. Multivariate statistical analyses for neuroimaging data. Annu. Rev. Psychol. 64, 499–525 (2013).
pubmed: 22804773 doi: 10.1146/annurev-psych-113011-143804
Vázquez-Rodríguez, B. et al. Gradients of structure–function tethering across neocortex. Proc. Natl Acad. Sci. USA 116, 21219–21227 (2019).
pubmed: 31570622 pmcid: 6800358 doi: 10.1073/pnas.1903403116
Markello, R. & Misic, B. Comparing spatially-constrained null models for parcellated brain maps. Preprint at bioRxiv https://doi.org/10.1101/2020.08.13.249797 (2020).
Burt, J. B., Helmer, M., Shinn, M., Anticevic, A. & Murray, J. D.Generative modeling of brain maps with spatial autocorrelation. NeuroImage 220, 117038 (2020).
pubmed: 32585343 doi: 10.1016/j.neuroimage.2020.117038
Fulcher, B. D, Arnatkevičiūtė, A. & Fornito, A. Overcoming bias in gene-set enrichment analyses of brain-wide transcriptomic data. Preprint at bioRxiv https://doi.org/10.1101/2020.04.24.058958 (2020).
Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016).
pubmed: 26687838 doi: 10.1016/j.neuron.2015.11.013
Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).
pubmed: 29227469 doi: 10.1038/nbt.4038
Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).
pubmed: 28846088 pmcid: 5623139 doi: 10.1038/nmeth.4407
Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl Acad. Sci. USA 112, 7285–7290 (2015).
pubmed: 26060301 pmcid: 4466750 doi: 10.1073/pnas.1507125112
Li, M. et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362, eaat7615 (2018).
pubmed: 30545854 pmcid: 6413317 doi: 10.1126/science.aat7615
McKenzie, A. T. et al. Brain cell type specific gene expression and co-expression network architectures. Sci. Rep. 8, 8868 (2018).
pubmed: 29892006 pmcid: 5995803 doi: 10.1038/s41598-018-27293-5
Huntenburg, J. M., Bazin, P.-L. & Margulies, D. S. Large-scale gradients in human cortical organization. Trends Cogn. Sci. 22, 21–31 (2018).
pubmed: 29203085 doi: 10.1016/j.tics.2017.11.002
Wang, X.-J.Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nat. Rev. Neurosci. 21, 169–178 (2020).
pubmed: 32029928 pmcid: 7334830 doi: 10.1038/s41583-020-0262-x
Glasser, M. F. & Van Essen, D. C. Mapping human cortical areas in vivo based on myelin content as revealed by T1-and T2-weighted MRI. J. Neurosci. 31, 11597–11616 (2011).
pubmed: 21832190 pmcid: 3167149 doi: 10.1523/JNEUROSCI.2180-11.2011
Wagstyl, K., Ronan, L., Goodyer, I. M. & Fletcher, P. C. Cortical thickness gradients in structural hierarchies. NeuroImage 111, 241–250 (2015).
pubmed: 25725468 doi: 10.1016/j.neuroimage.2015.02.036
Huntenburg, J. M. et al. A systematic relationship between functional connectivity and intracortical myelin in the human cerebral cortex. Cereb. Cortex 27, 981–997 (2017).
pubmed: 28184415 pmcid: 5390400 doi: 10.1093/cercor/bhx030
Jones, E. G. & Powell, T. P. S. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93, 793–820 (1970).
pubmed: 4992433 doi: 10.1093/brain/93.4.793
Mesulam, M.-M. From sensation to cognition. Brain 121, 1013–1052 (1998).
pubmed: 9648540 doi: 10.1093/brain/121.6.1013
Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).
pubmed: 27791099 pmcid: 5098630 doi: 10.1073/pnas.1608282113
Coifman, R. R. et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc. Natl Acad. Sci. USA 102, 7426–7431 (2005).
pubmed: 15899970 pmcid: 1140422 doi: 10.1073/pnas.0500334102
Van Der Maaten, L., Postma, E. & Van den Herik, J. Dimensionality reduction: a comparative. J. Mach. Learn. Res. 10, 66–71 (2009).
Von Economo, C. & Koskinas, G. N. Die Cytoarchitektonik der Hirnrinde des Erwachsenen Menschen (Springer, 1925).
Mesulam, M.-M. Principles of Behavioral and Cognitive Neurology 2nd edn (Oxford Univ. Press, 2000).
Paquola, C. et al. Microstructural and functional gradients are increasingly dissociated in transmodal cortices. PLoS Biol. 17, e3000284 (2019).
pubmed: 31107870 pmcid: 6544318 doi: 10.1371/journal.pbio.3000284
Fox, P. T. et al. BrainMap taxonomy of experimental design: description and evaluation. Hum. Brain Mapp. 25, 185–198 (2005).
pubmed: 15846810 pmcid: 6871758 doi: 10.1002/hbm.20141
Vanasse, T. J. et al. BrainMap VBM: an environment for structural meta-analysis. Hum. Brain Mapp. 39, 3308–3325 (2018).
pubmed: 29717540 pmcid: 6866579 doi: 10.1002/hbm.24078
Laird, A. R., Lancaster, J. J. & Fox, P. T. BrainMap. Neuroinformatics 3, 65–77 (2005).
pubmed: 15897617 doi: 10.1385/NI:3:1:065
Alexander-Bloch, A. F. et al. Imaging local genetic influences on cortical folding. Proc. Natl Acad. Sci. USA 117, 7430–7436 (2020).
pubmed: 32170019 pmcid: 7132284 doi: 10.1073/pnas.1912064117
Forest, M. et al. Gene networks show associations with seed region connectivity. Hum. Brain Mapp. 38, 3126–3140 (2017).
pubmed: 28321948 pmcid: 6866840 doi: 10.1002/hbm.23579
Krienen, F. M., Yeo, B. T. T., Ge, T., Buckner, R. L. & Sherwood, C. C. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain. Proc. Natl Acad. Sci. USA 113, E469–E478 (2016).
pubmed: 26739559 pmcid: 4739529 doi: 10.1073/pnas.1510903113
Buckner, R. L. & Krienen, F. M. The evolution of distributed association networks in the human brain. Trends Cogn. Sci. 17, 648–665 (2013).
pubmed: 24210963 doi: 10.1016/j.tics.2013.09.017
Mueller, S. et al. Individual variability in functional connectivity architecture of the human brain. Neuron 77, 586–595 (2013).
pubmed: 23395382 pmcid: 3746075 doi: 10.1016/j.neuron.2012.12.028
Jo, Y., Faskowitz, J., Esfahlani, F. Z., Sporns, O. & Betzel, R. F. Subject identification using edge-centric functional connectivity. Preprint at bioRxiv https://doi.org/10.1101/2020.09.13.291898 (2020).
Vogel, J. W. et al. A molecular gradient along the longitudinal axis of the human hippocampus informs large-scale behavioral systems. Nat. Commun. 11, 960 (2020).
pubmed: 32075960 pmcid: 7031290 doi: 10.1038/s41467-020-14518-3
Mišić, B. & Sporns, O. From regions to connections and networks: new bridges between brain and behavior. Curr. Opin. Neurobiol. 40, 1–7 (2016).
pubmed: 27209150 pmcid: 5056800 doi: 10.1016/j.conb.2016.05.003
Kirschner, M. et al. Latent clinical-anatomical dimensions of schizophrenia. Schizophr. Bull. 46, 1426–1438 (2020).
pubmed: 32744604 doi: 10.1093/schbul/sbaa097 pmcid: 8496914
Amor, S., Puentes, F., Baker, D. & Van Der Valk, P. Inflammation in neurodegenerative diseases. Immunology 129, 154–169 (2010).
pubmed: 20561356 pmcid: 2814458 doi: 10.1111/j.1365-2567.2009.03225.x
Shafiei, G. et al. Spatial patterning of tissue volume loss in schizophrenia reflects brain network architecture. Biol. Psychiatry 87, 727–735 (2020).
pubmed: 31837746 doi: 10.1016/j.biopsych.2019.09.031
Bush, G., Luu, P. & Posner, M. I. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 4, 215–222 (2000).
pubmed: 10827444 doi: 10.1016/S1364-6613(00)01483-2
Goodkind, M. et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015).
pubmed: 25651064 pmcid: 4791058 doi: 10.1001/jamapsychiatry.2014.2206
Patania, A. et al. Topological gene expression networks recapitulate brain anatomy and function. Network Neurosci. 3, 744–762 (2019).
doi: 10.1162/netn_a_00094
Miller, J. A. et al. Improving reliability and absolute quantification of human brain microarray data by filtering and scaling probes using RNA-seq. BMC Genomics 15, 154 (2014).
pubmed: 24564186 pmcid: 4007560 doi: 10.1186/1471-2164-15-154
Alexander-Bloch, A. F. et al. On testing for spatial correspondence between maps of human brain structure and function. NeuroImage 178, 540–551 (2018).
pubmed: 29860082 doi: 10.1016/j.neuroimage.2018.05.070
Eckart, C. & Young, G. The approximation of one matrix by another of lower rank. Psychometrika 1, 211–218 (1936).
doi: 10.1007/BF02288367
Kovacevic, N., Abdi, H., Beaton, D. & McIntosh, A. R. in New Perspectives in Partial Least Squares and Related Methods 159–170 (Springer, 2013).
Helmer, M. et al. On stability of canonical correlation analysis and partial least squares with application to brain–behavior associations. Preprint at bioRxiv https://doi.org/10.1101/2020.08.25.265546 (2020).
Hotelling, H. The most predictable criterion. J. Educ. Psychol. 26, 139–142 (1935).
doi: 10.1037/h0058165
McIntosh, A. R. & Lobaugh, N. J. Partial least squares analysis of neuroimaging data: applications and advances. NeuroImage 23, S250–S263 (2004).
pubmed: 15501095 doi: 10.1016/j.neuroimage.2004.07.020
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Essen, D. C. Van et al. The WU-Minn Human Connectome Project: an overview. NeuroImage 80, 62–79 (2013).
pubmed: 23684880 doi: 10.1016/j.neuroimage.2013.05.041
Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105–124 (2013).
pubmed: 23668970 doi: 10.1016/j.neuroimage.2013.04.127
Werling, D. M. et al. Whole-genome and RNA sequencing reveal variation and transcriptomic coordination in the developing human prefrontal cortex. Cell Rep. 31, 107489 (2020).
pubmed: 32268104 pmcid: 7295160 doi: 10.1016/j.celrep.2020.03.053

Auteurs

Justine Y Hansen (JY)

McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada.

Ross D Markello (RD)

McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada.

Jacob W Vogel (JW)

Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Jakob Seidlitz (J)

Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Danilo Bzdok (D)

McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada.
Biological and Biomedical Engineering, McGill University, Montréal, Québec, Canada.
Mila, Quebec Artificial Intelligence Institute, Montréal, Québec, Canada.

Bratislav Misic (B)

McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada. bratislav.misic@mcgill.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH