Physical activity, sedentary behavior and risk of coronary artery disease, myocardial infarction and ischemic stroke: a two-sample Mendelian randomization study.


Journal

Clinical research in cardiology : official journal of the German Cardiac Society
ISSN: 1861-0692
Titre abrégé: Clin Res Cardiol
Pays: Germany
ID NLM: 101264123

Informations de publication

Date de publication:
Oct 2021
Historique:
received: 11 08 2020
accepted: 15 03 2021
pubmed: 29 3 2021
medline: 28 1 2022
entrez: 28 3 2021
Statut: ppublish

Résumé

Observational evidence suggests that physical activity (PA) is inversely and sedentarism positively related with cardiovascular disease risk. We performed a two-sample Mendelian randomization (MR) analysis to examine whether genetically predicted PA and sedentary behavior are related to coronary artery disease, myocardial infarction, and ischemic stroke. We used single nucleotide polymorphisms (SNPs) associated with self-reported moderate to vigorous PA (n = 17), accelerometer based PA (n = 7) and accelerometer fraction of accelerations > 425 milli-gravities (n = 7) as well as sedentary behavior (n = 6) in the UK Biobank as instrumental variables in a two sample MR approach to assess whether these exposures are related to coronary artery disease and myocardial infarction in the CARDIoGRAMplusC4D genome-wide association study (GWAS) or ischemic stroke in the MEGASTROKE GWAS. The study population included 42,096 cases of coronary artery disease (99,121 controls), 27,509 cases of myocardial infarction (99,121 controls), and 34,217 cases of ischemic stroke (404,630 controls). We found no associations between genetically predicted self-reported moderate to vigorous PA, accelerometer-based PA or accelerometer fraction of accelerations > 425 milli-gravities as well as sedentary behavior with coronary artery disease, myocardial infarction, and ischemic stroke. These results do not support a causal relationship between PA and sedentary behavior with risk of coronary artery disease, myocardial infarction, and ischemic stroke. Hence, previous observational studies may have been biased.

Identifiants

pubmed: 33774696
doi: 10.1007/s00392-021-01846-7
pii: 10.1007/s00392-021-01846-7
pmc: PMC8484185
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1564-1573

Informations de copyright

© 2021. The Author(s).

Références

Benjamin EJ et al (2018) Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation 137(12):e67–e492
doi: 10.1161/CIR.0000000000000558 pubmed: 29386200
Atlas Writing G et al (2018) European society of cardiology: cardiovascular disease statistics 2017. Eur Heart J 39(7):508–579
doi: 10.1093/eurheartj/ehx628
Wang H et al (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet 388(10053):1459–1544
doi: 10.1016/S0140-6736(16)31012-1
Physical Activity Guidelines Advisory Committee, Physical activity guidelines advisory committee scientific report, in Washington, DC: US Department of Health and Human Services (2018)
Kraus WE et al (2019) Physical activity, all-cause and cardiovascular mortality, and cardiovascular disease. Med Sci Sports Exerc 51(6):1270–1281
pubmed: 31095084 pmcid: 6527136 doi: 10.1249/MSS.0000000000001939
Cheng W et al (2018) Associations of leisure-time physical activity with cardiovascular mortality: a systematic review and meta-analysis of 44 prospective cohort studies. Eur J Prev Cardiol 25(17):1864–1872
pubmed: 30157685 doi: 10.1177/2047487318795194
Wahid A et al (2016) Quantifying the association between physical activity and cardiovascular disease and diabetes: a systematic review and meta-analysis. J Am Heart Assoc 5:9
doi: 10.1161/JAHA.115.002495
Howard VJ, McDonnell MN (2015) Physical activity in primary stroke prevention. Stroke 46(6):1735–1739
pubmed: 25882053 doi: 10.1161/STROKEAHA.115.006317
Ding D et al (2019) Towards better evidence-informed global action: lessons learnt from the Lancet series and recent developments in physical activity and public health. Br J Sports Med 2019:bjsports-2019-101001
Powell KE et al (2015) The scientific foundation for the physical activity guidelines for Americans, 2nd edition. J Phys Act Health 16(1):1
doi: 10.1123/jpah.2018-0618
Warren JM et al (2010) Assessment of physical activity—a review of methodologies with reference to epidemiological research: a report of the exercise physiology section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur J Cardiovasc Prev Rehabil 17(2):127–139
pubmed: 20215971 doi: 10.1097/HJR.0b013e32832ed875
Prince SA et al (2008) A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act 5:56
pubmed: 18990237 pmcid: 2588639 doi: 10.1186/1479-5868-5-56
Diaz KM et al (2017) Patterns of sedentary behavior and mortality in US middle-aged and older adults: a national cohort study. Ann Intern Med 2(017):5
Dohrn I-M et al (2018) Accelerometer-measured sedentary time and physical activity—a 15 year follow-up of mortality in a Swedish population-based cohort. J Sci Med Sport 21(7):702–707
pubmed: 29128418 doi: 10.1016/j.jsams.2017.10.035
LaMonte MJ et al (2018) Accelerometer-measured physical activity and mortality in women aged 63 to 99. J Am Geriatr Soc 66(5):886–894
pubmed: 29143320 doi: 10.1111/jgs.15201
Lee IM et al (2017) Accelerometer-measured physical activity and sedentary behavior in relation to all-cause mortality: the Women’s Health study. Circulation 2017:5
Matthews CE et al (2016) Accelerometer-measured dose-response for physical activity, sedentary time, and mortality in US adults. Am J Clin Nutr 104(5):1424–1432
pubmed: 27707702 pmcid: 5081718 doi: 10.3945/ajcn.116.135129
Evenson KR, Wen F, Herring AH (2016) Associations of accelerometry-assessed and self-reported physical activity and sedentary behavior with all-cause and cardiovascular mortality among US adults. Am J Epidemiol 184(9):621–632
pubmed: 27760774 pmcid: 5100839 doi: 10.1093/aje/kww070
Smith GD (2006) Randomised by (your) god: robust inference from an observational study design. J Epidemiol Community Health 60(5):382–388
pubmed: 16614326 pmcid: 2563965 doi: 10.1136/jech.2004.031880
Hingorani A, Humphries S (2005) Nature’s randomised trials. The Lancet 366(9501):1906–1908
doi: 10.1016/S0140-6736(05)67767-7
Burgess S, Foley CN, Zuber V (2018) Inferring causal relationships between risk factors and outcomes from genome-wide association study data. Annu Rev Genomics Hum Genet 19:303–327
pubmed: 29709202 pmcid: 6481551 doi: 10.1146/annurev-genom-083117-021731
Doherty A et al (2018) GWAS identifies 14 loci for device-measured physical activity and sleep duration. Nat Commun 9(1):5257
pubmed: 30531941 pmcid: 6288145 doi: 10.1038/s41467-018-07743-4
Klimentidis YC et al (2018) Genome-wide association study of habitual physical activity in over 377,000 UK Biobank participants identifies multiple variants including CADM2 and APOE. Int J Obes (Lond) 42(6):1161–1176
doi: 10.1038/s41366-018-0120-3
Fry A et al (2017) Comparison of sociodemographic and health-related characteristics of UK biobank participants with those of the general population. Am J Epidemiol 186(9):1026–1034
pubmed: 28641372 pmcid: 5860371 doi: 10.1093/aje/kwx246
Guo W, Key TJ, Reeves GK (2019) Accelerometer compared with questionnaire measures of physical activity in relation to body size and composition: a large cross-sectional analysis of UK Biobank. BMJ Open 9(1):e024206
pubmed: 30700478 pmcid: 6352868 doi: 10.1136/bmjopen-2018-024206
Doherty A et al (2017) Large scale population assessment of physical activity using wrist worn accelerometers: the UK biobank study. PLoS ONE 12(2):e0169649
pubmed: 28146576 pmcid: 5287488 doi: 10.1371/journal.pone.0169649
Purcell S et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575
pubmed: 17701901 pmcid: 1950838 doi: 10.1086/519795
Nikpay M et al (2015) A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 47(10):1121–1130
pubmed: 26343387 pmcid: 4589895 doi: 10.1038/ng.3396
Malik R et al (2018) Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet 50(4):524–537
pubmed: 29531354 pmcid: 5968830 doi: 10.1038/s41588-018-0058-3
Deloukas P et al (2013) Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 45(1):25–33
pubmed: 23202125 doi: 10.1038/ng.2480
Burgess S (2014) Sample size and power calculations in Mendelian randomization with a single instrumental variable and a binary outcome. Int J Epidemiol 43(3):922–929
pubmed: 24608958 pmcid: 4052137 doi: 10.1093/ije/dyu005
Burgess S et al (2019) Guidelines for performing Mendelian randomization investigations. Wellcome Open Res 4(186):186
pubmed: 32760811 doi: 10.12688/wellcomeopenres.15555.1
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57(1):289–300
Hemani G et al (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife 2018:7
Team RC (2013) R: a language and environment for statistical computing
Smith GD et al (2019) STROBE-MR: guidelines for strengthening the reporting of Mendelian randomization studies. PeerJ Preprints
Bowden J et al (2017) A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med 36(11):1783–1802
pubmed: 28114746 pmcid: 5434863 doi: 10.1002/sim.7221
Hemani G, Bowden J, Davey-Smith G (2018) Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet 27(R2):R195-r208
pubmed: 29771313 pmcid: 6061876 doi: 10.1093/hmg/ddy163
Burgess S, Thompson SG (2011) Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 40(3):755–764
pubmed: 21414999 doi: 10.1093/ije/dyr036
Kamat MA et al (2019) PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics 2019:5
Buniello A et al (2019) The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 47(D1):D1005-d1012
pubmed: 30445434 doi: 10.1093/nar/gky1120
Watanabe K et al (2019) A global overview of pleiotropy and genetic architecture in complex traits. Nat Genet 51(9):1339–1348
pubmed: 31427789 doi: 10.1038/s41588-019-0481-0
Dogra S et al (2019) Effects of replacing sitting time with physical activity on lung function: an analysis of the Canadian Longitudinal Study on Aging. Health Rep 30(3):12–23
pubmed: 30892662
Jones PR, Ekelund U (2019) Physical activity in the prevention of weight gain: the impact of measurement and interpretation of associations. Curr Obes Rep 8(2):66–76
pubmed: 30905041 doi: 10.1007/s13679-019-00337-1
Nocon M et al (2008) Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. Eur J Cardiovasc Prev Rehabil 15(3):239–246
pubmed: 18525377 doi: 10.1097/HJR.0b013e3282f55e09
Sanderson E et al (2019) An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int J Epidemiol 48(3):713–727
pubmed: 30535378 doi: 10.1093/ije/dyy262
Pulit SL et al (2019) Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum Mol Genet 28(1):166–174
pubmed: 30239722 doi: 10.1093/hmg/ddy327
Lee JJ et al (2018) Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet 50(8):1112–1121
pubmed: 30038396 pmcid: 6393768 doi: 10.1038/s41588-018-0147-3
Bowden J, Hemani G, Davey-Smith G (2018) Invited Commentary: Detecting Individual And Global Horizontal Pleiotropy In Mendelian Randomization-A Job For The Humble Heterogeneity Statistic? Am J Epidemiol 187(12):2681–2685
pubmed: 30188969 pmcid: 6269239
van Oort S et al (2020) Modifiable lifestyle factors and heart failure: a Mendelian randomization study. Am Heart J 227:64–73
pubmed: 32682105 doi: 10.1016/j.ahj.2020.06.007
van de Vegte YJ et al (2020) Genome-wide association studies and Mendelian randomization analyses for leisure sedentary behaviours. Nat Commun 11(1):1770
pubmed: 32317632 pmcid: 7174427 doi: 10.1038/s41467-020-15553-w
Zhuang Z et al (2020) Association of physical activity, sedentary behaviours and sleep duration with cardiovascular diseases and lipid profiles: a Mendelian randomization analysis. Lipids Health Dis 19(1):86
pubmed: 32384904 pmcid: 7206776 doi: 10.1186/s12944-020-01257-z
Bahls M et al (2018) Association of domain-specific physical activity and cardiorespiratory fitness with all-cause and cause-specific mortality in two population-based cohort studies. Sci Rep 8(1):16066
pubmed: 30375472 pmcid: 6207740 doi: 10.1038/s41598-018-34468-7
Myers J et al (2015) Physical activity and cardiorespiratory fitness as major markers of cardiovascular risk: their independent and interwoven importance to health status. Prog Cardiovasc Dis 57(4):306–314
pubmed: 25269064 doi: 10.1016/j.pcad.2014.09.011
DeFina LF et al (2015) Physical activity versus cardiorespiratory fitness: two (partly) distinct components of cardiovascular health? Prog Cardiovasc Dis 57(4):324–329
pubmed: 25269066 doi: 10.1016/j.pcad.2014.09.008
Williams PT (2001) Physical fitness and activity as separate heart disease risk factors: a meta-analysis. Med Sci Sports Exerc 33(5):754–761
pubmed: 11323544 pmcid: 2821586 doi: 10.1097/00005768-200105000-00012
Myers J et al (2004) Fitness versus physical activity patterns in predicting mortality in men. Am J Med 117(12):912–918
pubmed: 15629729 doi: 10.1016/j.amjmed.2004.06.047
Bouchard C et al (1999) Familial aggregation of Vo 2 max response to exercise training: results from the HERITAGE Family Study. J Appl Physiol 87:1003–1008
pubmed: 10484570 doi: 10.1152/jappl.1999.87.3.1003
Ren YY et al (2013) Genetic analysis of a rat model of aerobic capacity and metabolic fitness. PLoS ONE 8(10):e77588
pubmed: 24147032 pmcid: 3795692 doi: 10.1371/journal.pone.0077588
Karvinen S et al (2015) Physical activity in adulthood: genes and mortality. Sci Rep 5:18259
pubmed: 26666586 pmcid: 4678877 doi: 10.1038/srep18259
Dowd KP et al (2018) A systematic literature review of reviews on techniques for physical activity measurement in adults: a DEDIPAC study. Int J Behav Nutr Phys Act 15(1):15
pubmed: 29422051 pmcid: 5806271 doi: 10.1186/s12966-017-0636-2
Vink JM et al (2011) Variance components models for physical activity with age as modifier: a comparative twin study in seven countries. Twin Res Hum Genet 14(1):25–34
pubmed: 21314253 doi: 10.1375/twin.14.1.25
Burgess S, Labrecque JA (2018) Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates. Eur J Epidemiol 33(10):947–952
pubmed: 30039250 pmcid: 6153517 doi: 10.1007/s10654-018-0424-6
Burgess S, Davies NM, Thompson SG (2014) Instrumental variable analysis with a nonlinear exposure-outcome relationship. Epidemiology 25(6):877–885
pubmed: 25166881 pmcid: 4222800 doi: 10.1097/EDE.0000000000000161

Auteurs

Martin Bahls (M)

Department of Internal Medicine B, University Medicine Greifswald, 17475, Greifswald, Germany. martin.bahls@uni-greifswald.de.
DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany. martin.bahls@uni-greifswald.de.

Michael F Leitzmann (MF)

Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany.

André Karch (A)

Institute of Epidemiology and Social Medicine, University of Muenster, Muenster, Germany.

Alexander Teumer (A)

DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.
Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany.

Marcus Dörr (M)

Department of Internal Medicine B, University Medicine Greifswald, 17475, Greifswald, Germany.
DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.

Stephan B Felix (SB)

Department of Internal Medicine B, University Medicine Greifswald, 17475, Greifswald, Germany.
DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.

Christa Meisinger (C)

Chair of Epidemiology, LMU München, UNIKA-T Augsburg, Augsburg, Germany.
Independent Research Group Clinical Epidemiology, Helmholtz Zentrum Muenchen, Munich, Germany.

Sebastian E Baumeister (SE)

Chair of Epidemiology, LMU München, UNIKA-T Augsburg, Augsburg, Germany.
Independent Research Group Clinical Epidemiology, Helmholtz Zentrum Muenchen, Munich, Germany.
Institute of Health Services Research in Dentistry, University of Muenster, Muenster, Germany.

Hansjörg Baurecht (H)

Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH