Stepwise approach for visualization and reconstruction of pulmonary valve with intracardiac echocardiography.
intracardiac echocardiography
outflow tract ventricular arrhythmias
pulmonary valve PVCs
Journal
Pacing and clinical electrophysiology : PACE
ISSN: 1540-8159
Titre abrégé: Pacing Clin Electrophysiol
Pays: United States
ID NLM: 7803944
Informations de publication
Date de publication:
Jul 2021
Jul 2021
Historique:
revised:
02
03
2021
received:
05
01
2021
accepted:
21
03
2021
pubmed:
1
4
2021
medline:
19
2
2022
entrez:
31
3
2021
Statut:
ppublish
Résumé
Ventricular tachycardia and premature ventricular complexes (PVCs) arising from right ventricular outflow tract (RVOT) are the most common type of ventricular arrhythmias (VAs) in patients without structural heart disease. Radiofrequency ablation is now the gold standard of treatment in this setting due to high efficacy rates and optimal safety profile. During the last few years, the pulmonary valve (PV) and the pulmonary artery (PA) have attracted much attention as reliable sites of origin of RVOT-type arrhythmias. In the mean while intracardiac echocardiogram (ICE) has undoubtedly improved our understanding of the cardiac anatomy. Aim of this paper is to provide an illustrated step-by-step guide on how to use ICE with the CARTOSOUND module to visualize and reconstruct 3D shell of the RV, the PV, as well of other contiguous anatomical structures (i.e., the aortic valve and coronary arteries) to perform aware and safe ablation in this region.
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1267-1276Informations de copyright
© 2021 Wiley Periodicals LLC.
Références
Ventura R, Steven D, Klemm HU, et al. Decennial follow-up in patients with recurrent tachycardia originating from the right ventricular outflow tract: electrophysiologic characteristics and response to treatment. Eur Heart J. 2007;28:2338-2345.
Cronin EM, Bogun FM, Maury P, et al. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Heart Rhythm. 2020;17:e155-e205.
Jadonath RL, Schwartzman DS, Preminger MW, Gottlieb CD, Marchlinski FE. Utility of the 12-lead electrocardiogram in localizing the origin of right ventricular outflow tract tachycardia. Am Heart J. 1995;130:1107-1113.
Dixit S, Gerstenfeld EP, Callans DJ, Marchlinski FE. Electrocardiographic patterns of superior right ventricular outflow tract tachycardias: distinguishing septal and free-wall sites of origin. J Cardiovasc Electrophysiol. 2003;14:1-7.
Timmermans C, Rodriguez LM, Medeiros A, Crijns HJGM, Wellens HJJ. Radiofrequency catheter ablation of idiopathic ventricular tachycardia originating in the main stem of the pulmonary artery. J Cardiovasc Electrophysiol. 2002;13:281-284.
Timmermans C, Rodriguez LM, Crijns HJGM, Moorman A, Wellens HJJ. Idiopathic left bundle-branch block- shaped ventricular tachycardia may originate above the pulmonary valve. Circulation. 2003;108:1960-1967.
Sekiguchi Y, Aonuma K, Takahashi A, et al. Electrocardiographic and electrophysiologic characteristics of ventricular tachycardia originating within the pulmonary artery. J Am Coll Cardiol. 2005;45:887-895.
Suleiman M, Asirvatham SJ. Ablation above the semilunar valves: when, why, and how? Part I. Heart Rhythm. 2008;5:1485-1492.
Liao Z, Zhan X, Wu S, et al. Idiopathic ventricular arrhythmias originating from the pulmonary sinus cusp. prevalence, electrocardiographic/electrophysiological characteristics, and catheter ablation. J Am Coll Cardiol. 2015;66:2633-2644.
Liang Z, Ren X, Zhang T, Jianzeng Dong ZH, Wang Y. Mapping and ablation of RVOT-type arrhythmias: comparison between the conventional and reversed U curve methods. J Interv Card Electrophysiol. 2018;52:19-30.
Yang Y, Liu Q, Liu Z, Zhou S. Treatment of pulmonary sinus cusp-derived ventricular arrhythmia with reversed U-curve catheter ablation. J Cardiovasc Electrophysiol. 2017;28:768-775.
Yang Y, Liu Q, Luo X, Liu Z, Zhou S. Insights on the pulmonary artery-derived ventricular arrhythmia. J Cardiovasc Electrophysiol. 2018;29:1330-1337.
Zhang J, Tang C, Zhang Y, Su X. Pulmonary sinus cusps mapping and ablation: a new concept and approach for idiopathic right ventricular outflow tract arrhythmias. Heart Rhythm. 2018;15:38-45.
Anderson RH, Mohun TJ, Sanchez-Quintana D. The anatomic substrates for outflow tract arrhythmias. Heart Rhythm. 2019;16:290-297.
Gami AS, Noheria A, Lachman N, et al. Anatomical correlates relevant to ablation above the semilunar valves for the electrophysiologist: a study of 603 hearts. J Interv Card Electrophysiol. 2011;30:5-15.
Liu CF, Cheung JW, Thomas G, Ip JE, Markowitz SM, Lerman BB. Ubiquitous myocardial extensions into the pulmonary artery demonstrated by integrated intracardiac echocardiography and electroanatomic mapping changing the paradigm of idiopathic right ventricular outflow tract arrhythmias. Circ Arrhythm Electrophysiol. 2014;7:691-700.
Stamm CG, Anderson RH, Ho SY. Clinical anatomy of the normal pulmonary root compared with that in isolated pulmonary valvular stenosis. J Am Coll Cardiol. 1998;31:1420-1425.
Walsh KA, Fahy GJ. Anatomy of the left main coronary artery of particular relevance to ablation of left atrial and outflow tract arrhythmias. Heart Rhythm. 2014;11:2231-2238.
Futyma P, Santangeli P, Purerfellner H, et al. Anatomic approach with bipolar ablation between the left pulmonic cusp and left ventricular outflow tract for left ventricular summit arrhythmias. Heart Rhythm. 2020;17:1519-1522.
Dong X, Tang M, Sun Q, Zhang S. Anatomical relevance of ablation to the pulmonary artery root: clinical implications for characterizing the pulmonary sinus of Valsalva and coronary artery. J Cardiovasc Electrophysiol. 2018;29:1230-1237.
Ehdaie A, Liu F, Cingolani E, Wang X, Chugh SS, Shehata M. How to use intracardiac echocardiography to guide catheter ablation of outflow tract ventricular arrhythmias. Heart Rhythm. 2020;17:1405-1410.
Enriquez A, Saenz LC, Rosso R. Use of intracardiac echocardiography in interventional cardiology. working with the anatomy rather than fighting it. Circulation. 2018;137:2278-2294.
Kaneshiro T, Suzuki H, Nodera M, et al. Mapping strategy associated with qrs morphology for catheter ablation in patients with idiopathic ventricular outflow tract tachyarrhythmia. Pacing Clin Electrophysiol. 2016;39:338-344.
Movsowitz C, Schwartzman D, Callans DJ, et al. Idiopathic right ventricular outflow tract tachycardia: narrowing the anatomic location for successful ablation. Am Heart J. 1996;131:930-936.
Yamashina Y, Yagi T, Namekawa A, et al. Distribution of successful ablation sites of idiopathic right ventricular outflow tract tachycardia. Pacing Clin Electrophysiol. 2009;32:727-733.
Wang C, Zhang Y, Hong F, Huang Y. Pulmonary artery: a pivotal site for catheter ablation in idiopathic RVOT ventricular arrhythmias. Pacing Clin Electrophysiol. 2017;40:803-807.
Hasdemir C, Aktas S, Govsa F, et al. Demonstration of ventricular myocardial extensions into the pulmonary artery and aorta beyond the ventriculo-arterial junction. Pacing Clin Electrophysiol. 2007;30:534-539.
De Sensi F, Addonisio L, Limbruno U. Premature ventricular complexes ablation above the anterior pulmonary cusp with reversed U curve under intracardiac echocardiography guidance. J Interv Card Electrophysiol. 2020;57:105-106.
De Sensi F, Miracapillo G, Cresti A, Paneni F, Limbruno U. Image integration guided ablation of left outflow tract ventricular tachycardia: is coronary angiography still necessary?. Indian Pacing Electrophysiol J. 2018;18:73-75.